Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308527, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221686

RESUMO

Flexible hydroelectric generators (HEGs) are promising self-powered devices that spontaneously derive electrical power from moisture. However, achieving the desired compatibility between a continuous operating voltage and superior current density remains a significant challenge. Herein, a textile-based van der Waals heterostructure is rationally designed between conductive 1T phase tungsten disulfide@carbonized silk (1T-WS2 @CSilk) and carbon black@cotton (CB@Cotton) fabrics with an asymmetric distribution of oxygen-containing functional groups, which enhances the proton concentration gradients toward high-performance wearable HEGs. The vertically staggered 1T-WS2 nanosheet arrays on the CSilk fabric provide abundant hydrophilic nanochannels for rapid carrier transport. Furthermore, the moisture-induced primary battery formed between the active aluminum (Al) electrode and the conductive textiles introduces the desired electric field to facilitate charge separation and compensate for the decreased streaming potential. These devices exhibit a power density of 21.6 µW cm-2 , an open-circuit voltage (Voc ) of 0.65 V sustained for over 10 000 s, and a current density of 0.17 mA cm-2 . This performance makes them capable of supplying power to commercial electronics and human respiratory monitoring. This study presents a promising strategy for the refined design of wearable electronics.

2.
ACS Nano ; 18(1): 492-505, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117279

RESUMO

Flexible moisture-electric generators (MEGs) capture chemical energy from atmospheric moisture for sustainable electricity, gaining attention in wearable electronics. However, challenges persist in the large-scale integration and miniaturization of MEGs for long-term, high-power output. Herein, a vertical heterogeneous phase-engineering MoS2 nanosheet structure based silk and cotton were rationally designed and successfully applied to construct wearable MEGs for moisture-energy conversion. The prepared METs exhibit ∼0.8 V open-circuit voltage, ∼0.27 mA/cm2 current density for >10 h, and >36.12 µW/cm2 peak output power density, 3 orders higher than current standards. And the large-scale device realizes a current output of 0.145 A. An internal phase gradient between the 2H semiconductor MoS2 in carbonized silks and 1T metallic MoS2 in cotton fibers enables a phase-engineering-based heterogeneous electric double layer functioning as an equivalent parallel circuit, leading to enhanced high-power output. Owing to their facile customization for seamless adaptation to the human body, we envision exciting possibilities for these wearable METs as integrated self-power sources, enabling real-time monitoring of physiological parameters in wearable electronics.

3.
ACS Appl Mater Interfaces ; 15(9): 12032-12040, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36802223

RESUMO

Multifunctional and long-term stable wearable heating systems have attracted extensive attention from experts, yet smart textiles that only rely on harvesting the body's heat without additional energy still face huge challenges in practical applications. Herein, we rationally prepared the monolayer MXene Ti3C2Tx nanosheets via an in situ hydrofluoric acid generation method, which was further employed to construct a wearable heating system of MXene @ polyester polyurethane blend fabrics (MP textile) for the passive personal thermal management through a simple spraying process. Owing to the unique two-dimensional (2D) structure, the MP textile presents the desired mid-infrared emissivity, which could efficiently suppress the thermal radiation loss from the human body. Notably, the MP textile with an MXene concentration of 28 mg/mL exhibits a low mid-infrared emissivity of 19.53% at 7-14 µm. Significantly, these prepared MP textiles demonstrate an enhanced temperature of more than 6.83 °C compared with those of favorably traditional fabrics, involving the black polyester fabric, pristine polyester polyurethane blend fabric (PU/PET), and cotton, suggesting a charming indoor passive radiative heating performance. The temperature of real human skin covered by MP textile is 2.68 °C higher than that covered by cotton fabric. Impressively, these prepared MP textiles simultaneously possess attractive breathability, moisture permeability, mechanical strength, and washability, which provide new insight into human body temperature regulation and physical health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...