Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116831, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824835

RESUMO

Metabolic reprogramming plays critical roles in the development and progression of tumor by providing cancer cells with a sufficient supply of nutrients and other factors needed for fast-proliferating. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in the initiation of metastasis via regulating the metabolic reprogramming in various cancers. In this paper, we aim to summarize that lncRNAs could participate in intracellular nutrient metabolism including glucose, amino acid, lipid, and nucleotide, regardless of whether lncRNAs have tumor-promoting or tumor-suppressor function. Meanwhile, modulation of lncRNAs in glucose metabolic enzymes in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle (TCA) in cancer is reviewed. We also discuss therapeutic strategies targeted at interfering with enzyme activity to decrease the utilization of glucoses, amino acid, nucleotide acid and lipid in tumor cells. This review focuses on our current understanding of lncRNAs participating in cancer cell metabolic reprogramming, paving the way for further investigation into the combination of such approaches with existing anti-cancer therapies.


Assuntos
Redes e Vias Metabólicas , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Redes e Vias Metabólicas/genética , Regulação Neoplásica da Expressão Gênica
2.
Sci Rep ; 14(1): 6212, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485714

RESUMO

Physical exercise intervention can significantly improve the liver of patients with Non-alcoholic fatty liver disease (NAFLD), but it is unknown which exercise mode has the best effect on liver improvement in NAFLD patients. Therefore, we systematically evaluated the effect of exercise therapy on liver and blood index function of NAFLD patients through network meta-analysis (NMA). Through systematic retrieval of PubMed, Cochrane Library, Web of Science, EBSCO, and CNKI (National Knowledge Infrastructure), two reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies by means of databases from inception to January 2023. The NMA was performed using the inconsistency model. A total of 43 studies, 2070 NAFLD patients were included: aerobic training (n = 779), resistance training (n = 159), high-intensity interval training (n = 160), aerobic training + resistance training (n = 96). The results indicate that aerobic training + resistance training could significantly improve serum total cholesterol (TC) (Surface under the cumulative ranking curve (SUCRA) = 71.7), triglyceride (TG) (SUCRA = 96.8), low-density lipoprotein cholesterol (LDL-C) (SUCRA = 86.1) in patients with NAFLD including triglycerides. Aerobic training is the best mode to improve ALT (SUCRA = 83.9) and high-density lipoprotein cholesterol (HDL-C) (SUCRA = 72.3). Resistance training is the best mode to improve aspartate transaminase (AST) (SUCRA = 81.7). Taking various benefits into account, we believe that the best modality of exercise for NAFLD patients is aerobic training + resistance training. In our current network meta-analysis, these exercise methods have different effects on the six indicators of NAFLD, which provides some reference for further formulating exercise prescription for NAFLD patients.

3.
Curr Protein Pept Sci ; 25(6): 480-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284716

RESUMO

BACKGROUND: It has been proven that vasoactive intestinal peptide (VIP) was involved in the pathogenesis of prostate cancer. Cardin et al. found that by an alanine scan, the heparin- binding site on VIP was exactly the same sequence in VIP and its receptor. Therefore, heparin could competitively block the binding of VIP and its receptor. However, the structure-activity relationship between heparin and VIP has not been reported, especially in terms of the sequence and sulfation patterns of heparin oligosaccharides upon binding to VIP. OBJECTIVE: A variety of experiments were designed to study the binding process and structure-activity relationship between heparin oligosaccharides and VIP. METHODS: Heparin was enzymatically digested and purified to produce heparin oligosaccharides, and the structures were characterized by NMR. The binding capacity between heparin oligosaccharides and VIP was analyzed by GMSA and ITC experiments. The binding between heparin oligosaccharides and VIP was simulated using a molecular docking program to show the complex. ELISA assay was used to investigate the effect of non-anticoagulant heparin oligosaccharides on the VIP-mediated cAMP/PKA signaling pathway in vitro. RESULTS: The results indicated that both the length and the sulfation pattern of heparin oligosaccharides affected its binding to VIP. VIP could induce the expression of cAMP at a higher level in PC3 cells, which could be regulated by the interaction of heparin oligosaccharides and VIP. CONCLUSION: The binding between heparin oligosaccharides and VIP could block the binding between VIP and its receptor on tumor cells. Downloading the regulation of the expression level of cAMP could possibly further affect the subsequent activation of PKA. These non-anticoagulant heparin oligosaccharides may block the VIP-mediated cAMP/PKA signaling pathway and thus exert their antitumor activity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Heparina , Simulação de Acoplamento Molecular , Oligossacarídeos , Ligação Proteica , Transdução de Sinais , Peptídeo Intestinal Vasoativo , Heparina/metabolismo , Heparina/química , Heparina/farmacologia , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Humanos , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/química , AMP Cíclico/metabolismo , Sítios de Ligação , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Estrutura-Atividade , Masculino , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia
4.
PLoS One ; 19(1): e0296430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271362

RESUMO

OBJECTIVE: To investigate the effect of aerobic exercise intervention to inhibit cardiomyocyte apoptosis and thus improve cardiac function in myocardial infarction (MI) mice by regulating CTGF expression through miR-133a-3p. METHODS: Male C57/BL6 mice, 7-8 weeks old, were randomly divided into sham-operated group (S group), sham-operated +aerobic exercise group (SE group), myocardial infarction group (MI group) and MI + aerobic exercise group (ME group). The mice were anesthetized the day after training and cardiac function was assessed by cardiac echocardiography. Myocardial collagen volume fraction (CVF%) was analyzed by Masson staining. Myocardial CTGF, Bax and Bcl-2 were detected by Western blotting, and myocardial miR-133a-3p was measured by RT-qPCR. RESULTS: Compared with the S group, miR-133a-3p, Bcl-2 and EF were significantly decreased and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly increased in the MI group. Compared with the MI group, miR-133a-3p, Bcl-2 and EF were significantly increased, cardiac function was significantly improved, and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly decreased in ME group. The miR-133a-3p was significantly lower and CTGF was significantly higher in the H2O2 intervention group compared with the control group of H9C2 rat cardiomyocytes. miR-133a-3p was significantly higher and CTGF was significantly lower in the AICAR intervention group compared to the H2O2 intervention group. Compared with the control group of H9C2 rat cardiomyocytes, CTGF, Bax and Bax/Bcl-2 were significantly increased and Bcl-2 was significantly decreased in the miR-133a-3p inhibitor intervention group; CTGF, Bax and Bax/Bcl-2 were significantly decreased and Bcl-2 was significantly upregulated in the miR-133a-3p mimics intervention group. CONCLUSION: Aerobic exercise down-regulated CTGF expression in MI mouse myocardium through miR-133a-3p, thereby inhibiting cardiomyocyte apoptosis and improving cardiac function.


Assuntos
MicroRNAs , Infarto do Miocárdio , Ratos , Masculino , Camundongos , Animais , Caspase 3/metabolismo , Regulação para Baixo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Peróxido de Hidrogênio/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37980702

RESUMO

Licorice flavonoids (LFs) are derived from perennial herb licorice and have been attaining a considerable interest in cosmetic and skin ailment treatments. However, some LFs compounds exhibited poor permeation and retention capability, which restricted their application. In this paper, we systematically investigated and compared the enhancement efficacy and mechanisms of different penetration enhancers (surfactants) with distinct lipophilicity or "heat and cool" characteristics on ten LFs compounds. Herein, the aim was to unveil how seven different enhancers modified the stratum corneum (SC) surface and influence the drug-enhancers-skin interaction, and to relate these effects to permeation enhancing effects of ten LFs compounds. The enhancing efficacy was evaluated by enhancement ratio (ER)permeation, ERretention, and ERcom, which was conducted on the porcine skin. It was summarized that heat capsaicin (CaP) and lipophilic Plurol® Oleique CC 497 (POCC) caused the most significance of SC lipid fluidity, SC water loss, and surface structure alterations, thereby resulting in a higher permeation enhancing effects than other enhancers. CaP could completely occupied drug-skin interaction sites in the SC, while POCC only occupied most drug-skin interactions. Moreover, the enhancing efficacy of both POCC and CaP was dependent on the log P values of LFs. For impervious LFs with low drug solubility, enhancing their drug solubility could help them permeate into the SC. For high-permeation LFs, their permeation was inhibited ascribed to the strong drug-enhancer-skin strength in the SC. More importantly, drug-surfactant-skin energy possessed a good negative correlation with the LFs permeation amount for most LFs molecules. Additionally, the activation of transient receptor potential vanilloid 1 (TRPV1) could enhance LFs permeation by CaP. The study provided novel insights for drug permeation enhancement from the viewpoint of molecular pharmaceutics, as well as the scientific utilization of different enhancers in topical or transdermal formulations.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36913526

RESUMO

To date, the transdermal delivery study mainly focused on the drug delivery systems' design and efficacy evaluation. Few studies reported the structure-affinity relationship of the drug with the skin, further revealing the action sites of the drugs for enhanced permeation. Flavonoids attained a considerable interest in transdermal administration. The aim is to develop a systematic approach to evaluate the substructures that were favorable for flavonoid delivery into the skin and understand how these action sites interacted with lipids and bound to multidrug resistance protein 1 (MRP1) for enhanced transdermal delivery. First, we investigated the permeation properties of various flavonoids on the porcine skin or rat skin. We found that 4'-OH (hydroxyl group on the carbon 4' position) rather than 7-OH on the flavonoids was the key group for flavonoid permeation and retention, while 4'-OCH3 and -CH2═CH2-CH-(CH3)2 were unfavorable for drug delivery. 4'-OH could decrease flavonoids' lipophilicity to an appropriate log P and polarizability for better transdermal drug delivery. In the stratum corneum, flavonoids used 4'-OH as a hand to specifically grab the C═O group of the ceramide NS (Cer), which increased the miscibility of flavonoids and Cer and then disturbed the lipid arrangement of Cer, thereby facilitating their penetration. Subsequently, we constructed overexpressed MRP1 HaCaT/MRP1 cells by permanent transfection of human MRP1 cDNA in wild HaCaT cells. In the dermis, we observed that 4'-OH, 7-OH, and 6-OCH3 substructures were involved in H-bond formation within MRP1, which increased the flavonoid affinity with MRP1 and flavonoid efflux transport. Moreover, the expression of MRP1 was significantly enhanced after the treatment of flavonoids on the rat skin. Collectively, 4'-OH served as the action site for increased lipid disruption and enhanced affinity for MRP1, which facilitate the transdermal delivery of flavonoids, providing valuable guidelines for molecular modification and drug design of flavonoids.

7.
Arch Pharm (Weinheim) ; 356(4): e2200470, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36707412

RESUMO

Licorice flavonoids (LCFs) have been widely used in food care and medical treatment due to their significant antioxidant activities. However, the molecular mechanism of their antioxidant activity remains unclear. Therefore, network pharmacology, ADMET, density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulation were employed to explore the molecular mechanism of the antioxidant effects of LCF. The network pharmacology and ADMET studies showed that the active molecules of kumatakenin (pKa = 6.18), licoflavonol (pKa = 6.86), and topazolin (pKa = 6.21) in LCF are key antioxidant components and have good biosafety. Molecular docking and MD simulation studies demonstrated that active molecules interacted with amino acid residues in target proteins to form stable protein-ligand complexes and exert their antioxidant effects. DFT studies showed that the antioxidant activity of LCF could be significantly modulated under the solvent-mediated effect. In addition, based on the derivation of the Henderson-Hasselbalch and van't Hoff formulas, the functional relationships between the reaction-free energy (ΔG) of LCF and the pH and pKa values were established. The results showed that active molecules with larger pKa values will be more conducive to the improvement of their antioxidant activity under solvent-mediated effects. In conclusion, this study found that increasing the pKa value of LCF would be an effective strategy to improve their antioxidant activity under the effect of solvent mediation. The pKa value of an LCF will be a direct standard to evaluate its solvent-mediated antioxidant activity. This study will provide theoretical guidance for the development of natural antioxidants.


Assuntos
Antioxidantes , Glycyrrhiza , Solventes , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/farmacologia , Flavonoides/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
8.
Int J Sports Med ; 44(7): 473-483, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36690029

RESUMO

The effect of exercise interventions on autism spectrum disorder (ASD) has been demonstrated in many studies, and the discovery of a bidirectional relationship between the gut microbiome (GM) and the central nervous system (CNS) has led to the concept of the microbial gut-brain axis (MGBA) and has linked the abnormal GM to a variety of neuropsychiatric disorders, autism being one of them. Research on improving the GM through exercise is also starting to come into focus. However, there are currently few studies on exercise intervention in the GM of autism. The purpose of this review was to find evidence to explore the possible potential effects of exercise to improve the behavior of individuals with autism in the MGBA in this treatment, as well as the potential of GM as an exercise treatment for autism. We will explore (1) changes in GM components of ASD and their relationship to the pathophysiology of ASD; (2) the relationship between exercise and changes in GM components, and (3) the effect of exercise on GM in CNS disorders. Ultimately, we concluded that Streptococcus, Bifidobacterium, Clostridium, Bacteroides, and Blautia may be potential effectors through the MGBA network during exercise to ameliorate ASD targeting microbiotas. They deserve high attention in the follow-up studies.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Transtorno Autístico/terapia , Transtorno do Espectro Autista/terapia , Transtorno do Espectro Autista/microbiologia
9.
Bioact Mater ; 23: 343-352, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36474653

RESUMO

Four-dimensional (4D) printing is a promising technology that provides solutions for compelling needs in various fields. Most of the reported 4D printed systems are based on the temporal shape transformation of printed subjects. Induction of temporal heterogenicity in functions in addition to shape may extend the scope of 4D printing. Herein, we report a 4D printing approach using plant protein (zein) gel inspired by the amyloid fibrils formation mechanism. The printing of zein gel in a specialized layered-Carbopol supporting bath with different water concentrations in an ethanol-water mixture modulates hydrophobic and hydrogen bonding that causes temporal changes in functions. The part of the construct printed in a supporting bath with higher water content exhibits higher drug loading, faster drug release and degradation than those printed in the supporting bath with lower water content. Tri-segment conduit and butterfly-shaped construct with two asymmetrical wings are printed using this system to evaluate biomedical function as nerve conduit and drug delivery system. 4D printed conduits are also effective as a drug-eluting urethral stent in the porcine model. Overall, this study extends the concept of 4D printing beyond shape transformation and presents an approach of fabricating specialized baths for 4D printing that can also be extended to other materials to obtain 4D printed medical devices with translational potential.

10.
J Mol Graph Model ; 118: 108374, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36401896

RESUMO

Human respiratory syncytial virus (hRSV) is a common contagious virus that causes infections of pediatric pneumonia and specifically impacts infants and small children. The hRSV phosphoprotein is a key component of the viral RNA polymerase, which can interact with nucleocapsid and other partners through its C-terminal tail (CTT) to promote the formation of viral transcriptase complex, where the Phe241 is a key anchor residue. Based on the crystal template-modeled complex structure of hRSV nucleocapsid with a peptidic segment derived from the phosphoprotein's CTT, we successfully introduced a rationally designed halogen-bonded system to the complex interface by substituting para (p)-position of the side-chain phenyl moiety of CTT Phe241 residue with a halogen atom X (X = F, Cl, Br or I). The halogen-bonded system consists of a halogen bond (X-bond) between nucleocapsid Ser131 residue and CTT Phe241 residue as well as a hydrogen bond (H-bond) between nucleocapsid Ser131 residue and nucleocapsid Glu128 residue; the X-bond and H-bond share a common hydroxyl group of nucleocapsid Ser131 residue. High-level theoretical calculations suggested that bromine Br is the best choice that can render strong potency for the X-bond and can confer high affinity to the nucleocapsid-CTT binding. Affinity analysis revealed that the p-brominated CTT ([p]bCTT) exhibited 6.3-fold affinity improvement relative to its nonhalogenated counterpart. In contrast, the Br-substitutions at ortho (o)- and meta (m)-positions, which resulted in two negative controls of o-brominated [o]bCTT and m-brominated [m]bCTT, respectively, were unable to form effective X-bond with nucleocapsid according to theoretical investigation and did not improve the binding affinity essentially relative to native CTT.


Assuntos
Vírus Sincicial Respiratório Humano , Lactente , Humanos , Criança , Halogênios , Nucleocapsídeo , Vírion , Fosfoproteínas
11.
CNS Neurosci Ther ; 29(1): 78-90, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36221783

RESUMO

INTRODUCTION: SHANK3 is an important excitatory postsynaptic scaffold protein, and its mutations lead to genetic cause of neurodevelopmental diseases including autism spectrum disorders (ASD), Philan McDermid syndrome (PMS), and intellectual disability (ID). Early prevention and treatment are important for Shank3 gene mutation disease. Swimming has been proven to have a positive effect on neurodegenerative diseases. METHODS: Shank3 gene exon 11-21 knockout rats were intervened by a 40 min/day, 5 day/week for 8-week protocol. After the intervention, the rats were tested to behavioral measures such as learning and memory, and the volume and H-spectrum of the brain were measured using MRI; hippocampal dendritic spines were measured using Golgi staining and laser confocal. RESULTS: The results showed that Shank3-deficient rats had significant deficits in social memory, object recognition, and water maze learning decreased hippocampal volume and number of neurons, and lower levels of related scaffold proteins and receptor proteins were found in Shank3-deficient rats. CONCLUSION: It is suggested that early swimming exercise has a positive effect on Shank3 gene-deficient rats, which provides a new therapeutic strategy for the prevention and recovery of neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Condicionamento Físico Animal , Animais , Ratos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Transtorno Autístico/genética , Transtorno Autístico/terapia , Comportamento Animal , Mutação , Proteínas do Tecido Nervoso/genética , Natação
12.
Eur J Pharm Sci ; 179: 106307, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241088

RESUMO

The present study was to systematically evaluate different licorice flavonoids (LFs) compounds release behaviors from the single payload hydrogel and LFs extracts hydrogels based on the drug solubility in the release medium (DSRM), intermolecular strength of the hydrogel and the "release steric hindrance" (RSH). Two kinds of LFs (LFs 1: LFs 2 = 5:1, W/W) hydrogels were prepared with Carbopol 940 (CBP) as the thickener, and ten LFs single payload hydrogels were prepared according to the actual content in the LFs 1 extracts. The drug release mechanisms were confirmed by in vitro release experiments and molecular dynamic simulation analysis, and evaluated using novel indicators of ERLFs 1/Sin (the enhancement ratio (ER) of drug release percent of LFs 1-CBP hydrogel to the single payload hydrogel), ERLFs 2/ LFs 1 (ER of drug release percent of LFs 2-CBP hydrogel to LFs 1-CBP hydrogel) and ERrelease medium (ER of drug release percent in different release medium). We found that LFs 1-CBP possessed a significantly higher intermolecular strength and RSH than LFs 2-CBP, resulting in a higher viscosity, which had a positive correlation with the payload content and a negative correlation with the drug release percent. Therefore, the ERLFs 2/ LFs 1 values of ten LFs compounds were all higher than 1. For liquiritigenin and retrochalcone with higher DSRM, they displayed similar ERLFs 1/ Sin, ERLFs 2/ LFs 1 and ERrelease medium values (≈1). For formononetin, licoflavone A and licochalcone A with low DSRM, they exhibited ERLFs 1/Sin values >1. The low DSRM was the decisive factor to restrict their release from the single payload hydrogel. The presence of glycyrrhizin acid (GA) in the LFs could facilitate their release from the LFs extracts hydrogel. For isoliquiritin, isoliquiritigenin and glabridin with a lower content in the LFs extracts, they exhibited ERLFs 1/Sin values <1. The RSH predominantly restricted its release. The study provided guidelines for the reasonable design of LFs extracts hydrogel in pharmaceutical topical formulations.


Assuntos
Glycyrrhiza , Hidrogéis , Liberação Controlada de Fármacos , Solubilidade , Flavonoides , Extratos Vegetais
13.
Int J Pharm ; 625: 122109, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35973589

RESUMO

Alopecia affected approximately 16.6% of all people in China, however, treatment options remain limited due to the side effects. Plant bioactive compound baicalin (BC) possesses hair growth-promotion activity, but poor water solubility and unsuitable log P value restrict its topical application, and natural Glycyrrhizin (GL) can exactly overcome these drawbacks. Here, BC was encapsulated in GL to form GL-BC micelles for alopecia treatment. Simultaneously, tween 80 (TW) as carriers was incorporated in the GL-BC to form GL-TW-BC micelles. The topical penetration, penetration pathways, cellular uptake and the underlying mechanisms behind the hair loss reconstruction of the GL micelles were investigated. We found the optimal GL-BC and GL-TW-BC formulations significantly improved the penetration and accumulation of BC in the porcine skin predominantly through the hair follicles pathways without causing skin irritation, which resulted in a targeted treatment. The proliferation of human dermal papilla cells (hDPCs) and effective cellular uptake was also enhanced. Moreover, the activation of the Wnt/ß-catenin pathway, up-expression of vascular endothelial growth factor (VEGF), α-melanocyte-stimulating hormone (α-MSH) and interleukin-10 (IL-10) were the mechanisms of micelles for the hair recovery. Interestingly, GL and BC exhibited a synergistic treatment of alopecia. Collectively, GL-BC and GL-TW-BC can be used as promising approaches for the treatment of alopecia.


Assuntos
Folículo Piloso , Micelas , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Flavonoides , Ácido Glicirrízico/metabolismo , Folículo Piloso/metabolismo , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Pharmaceutics ; 14(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35890229

RESUMO

The dynamic drug release mechanisms from Carbomer 940 (CP) hydrogels have not been systematically explored elsewhere. This study aimed to investigate the quantitative structure-activity relationship of licorice flavonoids (LFs) compounds on their drug release from CP hydrogels based on LFs-CP interactions and drug solubility in the release medium. Ten LFs-CP hydrogels were formulated, and their in vitro release study was conducted. The intermolecular forces of LFs-CP systems were characterized by FTIR, molecular docking and molecular dynamic simulation. Ten LFs compounds were classified into I (high-release capability) LFs and II (low-release capability) LFs according to the different negative correlations between drug release percent at 48 h and intermolecular forces of drugs-CP, respectively. Moreover, high-release LFs possessed significantly lower log P and higher drug solubility in the release medium than low-release LFs. All I LFs release behaviors best followed the first-order equation, while II LFs release characteristics best fitted the zero-order equation except for isoliquiritigenin. Log P mainly affect the hydrogel relaxation process for I drugs release and the drug diffusion process for II drugs release. Higher log P values for LFs resulted in higher intermolecular strength for I drugs-CP systems and lower drug solubility in the release medium for II drugs, which hindered drug release. Hydrophobic association forces in drug-CP hydrogel played a more and more dominant role in hindering I LFs release with increasing release time. On the other hand, lower drug solubility in the release medium restricted II LFs release, and the dominant role of drug solubility in the release medium increased in 24 h followed by a significant decline after 36 h. Collectively, log P of LFs served as a bridge to determine LFs compound release behaviors and classification from CP hydrogels, which provided guidelines for reasonable design of LFs hydrogels in pharmaceutical topical formulations.

15.
J Food Biochem ; 46(10): e14315, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35855584

RESUMO

Excessive oxygen free radicals can lead to aging, cancer, and other diseases. Therefore, searching for effective antioxidants to scavenge oxygen free radicals has become the focus of modern medicine. In this study, the molecular mechanism of Licorice Green Tea Beverage (LGTB) in scavenging oxygen free radicals was investigated by means of network pharmacology, molecular docking and experimental verification. Network pharmacology studies have shown that paeonol, eugenol, cinnamaldehyde, swertisin, rutin, glycyrrhetinic acid, oleic, pelargonidin-3-O-glucoside and quercetin, kaferempol were the main active components of LGTB, and SOD and CAT are important targets for LGTB in scavenging oxygen free radicals. The results of molecular docking showed that these representative compounds had good affinity to SOD and CAT target proteins. In vitro free radical scavenging experiments showed that LTGB had significant scavenging effects on both DPPH and ABTS radicals, and had strong total reducing power. In vitro cell experiments showed that LGTB could protect HaCaT cells from oxidative stress induced by H2 O2 . The mechanism of LGTB was related to the increase of SOD and CAT activity. Western blotting showed that LGTB could inhibit PI3K/AKT/HIF-1 signaling pathway and improve the antioxidant capacity of HaCaT cells. In vivo experiments showed that LGTB could significantly increase mouse visceral index, increase serum SOD and GSH-Px activity, decrease the content of MDA, and improve liver and kidney pathological state. This study reported the molecular mechanism of LTGB scavenging oxygen free radicals, which provided scientific basis for the treatment and clinical research of aging and other diseases caused by excessive free radicals. PRACTICAL APPLICATIONS: Free radicals are produced by the normal response of cells during aerobic respiration and perform various functions, such as signaling and providing protection against infection. However, excessive free radicals can lead to aging, cancer, and other diseases. The antioxidant can overcome the harm caused by excessive free radicals. In this study, we investigated the molecular mechanism of scavenging oxygen free radicals of Licorice Green Tea Beverage (LGTB) through network pharmacology and molecular docking, and its efficacy was verified by free radical scavenging experiment in vitro, HaCaT cell oxidative stress injury induced by H2 O2 , D-galactose to establish an aging model in mice and Western blotting experiment. It not only elucidates its mechanism at the system level, but also proves its validity at the biological level. It provides the theoretical basis and experimental evidence for the follow-up research and promotion of the product.


Assuntos
Ácido Glicirretínico , Glycyrrhiza , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Eugenol/farmacologia , Radicais Livres/metabolismo , Galactose , Glucosídeos , Glycyrrhiza/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt , Quercetina , Rutina , Superóxido Dismutase/metabolismo , Chá
16.
Phytomedicine ; 101: 154101, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35472695

RESUMO

BACKGROUND: Acne has become one of the most prevalent skin disorders, affecting mostly young people's physical and mental health globally. Cryptotanshinone (CPT) is a potential drug for acne, but its mechanism of acne treatment has not been thoroughly studied on the microbiota. Till date, only a few studies are directed to the impact of acne therapy on skin microbiota and lipid metabolites. PURPOSE: The action mechanism of CPT treatment of acne was investigated by the strategy of microbiome integration with lipidomics. METHODS: The 16Sr DNA sequencing was used to detect skin microbiota composition, and absolute quantitative lipidomics was utilized to identify lipid metabolites profiles levels. Four key proteins of the glycolysis pathway were detected with the immunochemistry method. Antibacterial analysis was used to evaluate CPT treatment of acne. RESULTS: CPT significantly inhibited Staphylococcus epidermidis and Staphylococcus aureus. Combination of the skin microbiome and lipidomics analysis, 29 types of differentially expressed flora (DEFs) and 782 differentially expressed lipid metabolites (DELMs) were significantly altered, especially Staphylococcus, Corynebacterium, Ralstonia, Enhydrobacter, Burkholderia, and Streptococcus. Cer was mainly regulated by Staphylococcus and Corynebacterium, whereas TG and DG were mainly regulated by Ralstonia, Enhydrobacter, Burkholderia, and Streptococcus. The glycolysis pathway was significantly regulated by Staphylococcus on CPT treatment of acne. The energy metabolism, lipid metabolism, immune system, glycan biosynthesis, and metabolism could be reversed by CPT. CONCLUSION: CPT might help acne rats rebuild their skin microbiota and alter lipid metabolism signatures. Furthermore, since skin microbes and skin lipid metabolites have a close correlation and are both regulated by CPT, the findings potentially provide a research foundation for the discovery of biomarkers of skin microbiome imbalance and targeted treatment of acne development mechanisms.


Assuntos
Acne Vulgar , Microbiota , Acne Vulgar/tratamento farmacológico , Acne Vulgar/metabolismo , Acne Vulgar/microbiologia , Adolescente , Animais , Humanos , Metabolismo dos Lipídeos , Lipídeos , Fenantrenos , Ratos , Pele/metabolismo
17.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458701

RESUMO

Keratin liposomes have emerged as a useful topical drug delivery system given theirenhanced ability to penetrate the skin, making them ideal as topical drug vehicles. However, the mechanisms of the drug penetration enhancement of keratin liposomes have not been clearly elucidated. Therefore, licochalcone A(LA)-loaded skin keratin liposomes (LALs) were prepared to investigate their mechanisms of penetration enhancement on the skin and inB16F10 cells. Skin deposition studies, differential scanning calorimetry (DSC), attenuated total reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and skin distribution and intracellular distribution studies were carried out to demonstrate the drug enhancement mechanisms of LALs. We found that the optimal application of LALs enhanced drug permeation via alterations in the components, structure, and thermodynamic properties of the stratum corneum (SC), that is, by enhancing the lipid fluidization, altering the skin keratin, and changing the thermodynamic properties of the SC. Moreover, hair follicles were the main penetration pathways for the LA delivery, which occurred in a time-dependent manner. In the B16F10 cells, the skin keratin liposomes effectively delivered LA into the cytoplasm without cytotoxicity. Thus, LAL nanoparticles are promising topical drug delivery systems for pharmaceutical and cosmetic applications.


Assuntos
Lipossomos , Absorção Cutânea , Administração Cutânea , Chalconas , Queratinas/metabolismo , Lipossomos/química , Pele
18.
Front Chem ; 10: 843970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308797

RESUMO

Licorice flavonoids (LCFs) are natural flavonoids isolated from Glycyrrhiza which are known to have anti-melanoma activities in vitro. However, the molecular mechanism of LCF anti-melanoma has not been fully understood. In this study, network pharmacology, 3D/2D-QSAR, molecular docking, and molecular dynamics (MD) simulation were used to explore the molecular mechanism of LCF anti-melanoma. First of all, we screened the key active components and targets of LCF anti-melanoma by network pharmacology. Then, the logIC50 values of the top 20 compounds were predicted by the 2D-QSAR pharmacophore model, and seven highly active compounds were screened successfully. An optimal 3D-QSAR pharmacophore model for predicting the activity of LCF compounds was established by the HipHop method. The effectiveness of the 3D-QSAR pharmacophore was verified by a training set of compounds with known activity, and the possible decisive therapeutic effect of the potency group was inferred. Finally, molecular docking and MD simulation were used to verify the effective pharmacophore. In conclusion, this study established the structure-activity relationship of LCF and provided theoretical guidance for the research of LCF anti-melanoma.

19.
Int J Pharm ; 617: 121612, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218899

RESUMO

Poly(vinyl alcohol) (PVA) and carbomer were used as the hydrogel system to fabricate glabridin-loaded hydrogel-forming microneedles (HFMNs) by chemical cross-linking (CCMNs) and physical cross-linking (PCMNs). The properties and drug permeation effects of glabridin-loaded HFMNs with different methods were compared. They both owned excellent shapes, mechanical and insertion properties. PCMNs showed collapsed shapes during swelling due to the low cross-linking rate and high porosity, which probably results in resealing of skin pores during transdermal drug delivery. However, CCMNs could rapidly swell within 2 h with slightly bending. The infrared spectra indicate that CCMNs and PCMNs might form the hydrogel network by generating hydrogen and covalent bonds, respectively. The in vitro release studies showed that cumulative permeation amount within 24 h (1654 µg/cm2) of CCMNs significantly higher than that (372 µg/cm2) achieved by PCMNs and that (118 µg/cm2) achieved by glabridin-loaded gel. The skin barrier recovery test suggests the desirable security of both microneedles (MNs), notwithstanding the presence of mild erythema in the mouse skin applied CCMNs. These results indicate that CCMNs were more desirable for glabridin delivery using PVA and carbomer as a skeleton of the hydrogel network.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos/métodos , Isoflavonas , Camundongos , Agulhas , Fenóis , Álcool de Polivinil/química
20.
Pharmaceutics ; 14(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35213995

RESUMO

This study aimed to systematically compare licochalcone A (LicA) and glabridin (Gla) (whitening agents) release and permeation from Carbomer 940 (CP) hydrogels with different enhancers, and evaluate the relationship between the quantitative enhancement efficacy and structures of the enhancers. An in vitro release study and an in vitro permeation experiment in solution and hydrogels using porcine skin were performed. We found that the Gla-CP hydrogel showed a higher drug release and skin retention amount than LicA-CP due to the higher solubility in medium and better miscibility with the skin of Gla than that of LicA. Enhancers with a higher molecular weight (MW) and lower polarizability showed a higher release enhancement effect (ERrelease) for both LicA and Gla. The Van der Waals forces in the drug-enhancers-CP system were negatively correlated with the drug release percent. Moreover, enhancers with a higher log P and polarizability displayed a higher retention enhancement effect in solution (ERsolution retention) for LicA and Gla. Enhancers decreased the whole intermolecular forces indrug-enhancers-skin system, which had a linear inhibitory effect on the drug retention. Moreover, C=O of ceramide acted asthe enhancement site for drug permeation. Consequently, Transcutol® P (TP) and propylene glycol (PG), seven enhancers showed a higher retention enhancement effect in hydrogel (ERhydrogel retention) for LicA and Gla. Taken together, the conclusions provide a strategy for reasonable utilization of enhancers and formulation optimization in topical hydrogel whitening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...