Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(4): e2307218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972344

RESUMO

Costly data movement in terms of time and energy in traditional von Neumann systems is exacerbated by emerging information technologies related to artificial intelligence. In-memory computing (IMC) architecture aims to address this problem. Although the IMC hardware prototype represented by a memristor is developed rapidly and performs well, the sneak path issue is a critical and unavoidable challenge prevalent in large-scale and high-density crossbar arrays, particularly in three-dimensional (3D) integration. As a perfect solution to the sneak-path issue, a self-rectifying memristor (SRM) is proposed for 3D integration because of its superior integration density. To date, SRMs have performed well in terms of power consumption (aJ level) and scalability (>102  Mbit). Moreover, SRM-configured 3D integration is considered an ideal hardware platform for 3D IMC. This review focuses on the progress in SRMs and their applications in 3D memory, IMC, neuromorphic computing, and hardware security. The advantages, disadvantages, and optimization strategies of SRMs in diverse application scenarios are illustrated. Challenges posed by physical mechanisms, fabrication processes, and peripheral circuits, as well as potential solutions at the device and system levels, are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...