Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(1): 171-184, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36324267

RESUMO

Precocious leaf senescence can reduce crop yield and quality by limiting the growth stage. Melatonin has been shown to delay leaf senescence; however, the underlying mechanism remains obscure. Here, we show that melatonin offsets abscisic acid (ABA) to protect photosystem II and delay the senescence of attached old leaves under the light. Melatonin induced H2 O2 accumulation accompanied by an upregulation of melon respiratory burst oxidase homolog D (CmRBOHD) under ABA-induced stress. Both melatonin and H2 O2 induced the accumulation of cytoplasmic-free Ca2+ ([Ca2+ ]cyt ) in response to ABA, while blocking of Ca2+ influx channels attenuated melatonin- and H2 O2 -induced ABA tolerance. CmRBOHD overexpression induced [Ca2+ ]cyt accumulation and delayed leaf senescence, whereas deletion of Arabidopsis AtRBOHD, a homologous gene of CmRBOHD, compromised the melatonin-induced [Ca2+ ]cyt accumulation and delay of leaf senescence in Arabidopsis under ABA stress. Furthermore, melatonin, H2 O2  and Ca2+ attenuated ABA-induced K+ efflux and subsequent cell death. CmRBOHD overexpression and AtRBOHD deletion alleviated and aggravated the ABA-induced K+ efflux, respectively. Taken together, our study unveils a new mechanism by which melatonin offsets ABA action to delay leaf senescence via RBOHD-dependent H2 O2 production that triggers [Ca2+ ]cyt accumulation and subsequently inhibits K+ efflux and delays cell death/leaf senescence in response to ABA.


Assuntos
Arabidopsis , Melatonina , Ácido Abscísico/farmacologia , Melatonina/farmacologia , Cálcio , Arabidopsis/genética , Senescência Vegetal
2.
Antioxidants (Basel) ; 11(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009313

RESUMO

Seed germination is a critical stage and the first step in the plant's life cycle. H2O2 and Ca2+ act as important signal molecules in regulating plant growth and development and in providing defense against numerous stresses; however, their crosstalk in modulating seed germination remains largely unaddressed. In the current study, we report that H2O2 and Ca2+ counteracted abscisic acid (ABA) to induce seed germination in melon and Arabidopsis by modulating ABA and gibberellic acid (GA3) balance. H2O2 treatment induced a Ca2+ influx in melon seeds accompanied by the upregulation of cyclic nucleotide-gated ion channel(CNGC) 20, which encodes a plasma membrane Ca2+-permeable channel. However, the inhibition of cytoplasmic free Ca2+ elevation in the melon seeds and Arabidopsis mutant atcngc20 compromised H2O2-induced germination under ABA stress. CaCl2 induced H2O2 accumulation accompanied by the upregulation of respiratory burst oxidase homologue(RBOH) D and RBOHF in melon seeds with ABA pretreatment. However, inhibition of H2O2 accumulation in the melon seeds and Arabidopsis mutant atrbohd and atrbohf abolished CaCl2-induced germination under ABA stress. The current study reveals a novel mechanism in which H2O2 and Ca2+ signaling crosstalk offsets ABA to induce seed germination. H2O2 induces Ca2+ influx, which in turn increases H2O2 accumulation, thus forming a reciprocal positive-regulatory loop to maintain a balance between ABA and GA3 and promote seed germination under ABA stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...