Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37759712

RESUMO

The development of efficient, reliable, and sensitive dopamine detection methods has attracted much attention. In this paper, vancomycin-stabilized platinum nanoparticles (Van-Ptn NPs, n = 0.5, 1, 2) were prepared by the biological template method, where n represented the molar ratio of vancomycin to Pt. The results show that Van-Pt2 NPs had oxidase-like activity and peroxidase-like activity, and the mechanism was due to the generation of reactive oxygen 1O2 and OH. Van-Pt2 NPs exhibited good temperature stability, storage stability, and salt solution stability. Furthermore, Van-Pt2 NPs had almost no cytotoxicity to A549 cells. More importantly, the colorimetric detection of DA in human serum samples was performed based on the oxidase-like activity of Van-Pt2 NPs. The linear range of DA detection was 10-700 µM, and the detection limit was 0.854 µM. This study establishes a rapid and reliable method for the detection of dopamine and extends the application of biosynthetic nanoparticles in the field of biosensing.

2.
Appl Environ Microbiol ; 88(9): e0029622, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435711

RESUMO

Pichia pastoris is widely used for the production of valuable recombinant proteins. An advantage of P. pastoris over other expression systems is that it secretes low levels of endogenous proteins, which facilitates the purification processes if the desired recombinant proteins are efficiently secreted into the culture medium. However, not all recombinant proteins can be successfully secreted by P. pastoris, especially enzymes that are located in intracellular compartments in their native hosts. Few studies have reported strategies for releasing recombinant proteins which cannot be secreted by standard protocols. Here, we investigated whether this challenge can be addressed using novel secretion leaders. Analysis of the secretome and transcriptome of P. pastoris indicated that the four genes with the highest protein-to-transcript ratios were EPX1, PAS_chr3_0030, SCW10, and UTH1, suggesting that their gene products contain efficient secretion leaders. Our data revealed that the signal peptide derived from the PAS_chr3_0030 gene product conferred secretion competence to certain industrial enzymes, e.g., a nitrilase of Alcaligenes faecalis ZJUTB10, a ribosylnicotinamide kinase of P. pastoris, and a glucose dehydrogenase of Exiguobacterium sibiricum. Therefore, the signal peptide derived from the PAS_chr3_0030 gene product represents a novel secretion sequence for the secretory expression of recombinant enzymes in P. pastoris. IMPORTANCE Although P. pastoris is widely used for the secretory production of pharmaceutical proteins, its successful applications in the secretory production of industrial enzymes are limited. The α-mating factor pre-pro leader is the most widely used secretion signal in P. pastoris, but numerous industrial enzymes cannot be secreted using it. The importance of this study is that we identified a signal peptide derived from the PAS_chr3_0030 gene product which conferred secretion competence to three-quarters of the enzymes tested. This signal peptide derived from the PAS_chr3_0030 gene product may facilitate the application of P. pastoris in industrial biocatalysis.


Assuntos
Sinais Direcionadores de Proteínas , Saccharomycetales , Pichia/genética , Pichia/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/metabolismo
3.
Biotechnol Lett ; 43(12): 2199-2208, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626279

RESUMO

Nicotinamide mononucleotide (NMN) or Nicotinamide-1-ium-1-ß-D-ribofuranoside 5'-phosphate is a nucleotide that can be converted into nicotinamide adenine dinucleotide (NAD) in human cells. NMN has recently attracted great attention because of its potential as an anti-aging drug, leading to great efforts for its effective manufacture. The chemical synthesis of NMN is a challenging task since it is an isomeric compound with a complicated structure. The majority of biological synthetic routes for NMN is through the intermediate phosphoribosyl diphosphate (PRPP), which is further converted to NMN by nicotinamide phosphoribosyltransferase (Nampt). There are various routes for the synthesis of PRPP from simple starting materials such as ribose, adenosine, and xylose, but all of these require the expensive phosphate donor adenosine triphosphate (ATP). Thus, an ATP regeneration system can be included, leading to diminished ATP consumption during the catalytic process. The regulations of enzymes that are not directly involved in the synthesis of NMN are also critical for the production of NMN. The aim of this review is to present an overview of the biological production of NMN with respect to the critical enzymes, reaction conditions, and productivity.


Assuntos
Citocinas/genética , Mononucleotídeo de Nicotinamida/biossíntese , Nicotinamida Fosforribosiltransferase/genética , Nucleotídeos/biossíntese , Adenosina/química , Trifosfato de Adenosina/genética , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Humanos , NAD/química , NAD/genética , Nucleotídeos/química , Ribose/química , Xilose/química
4.
Faraday Discuss ; 169: 195-207, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25340471

RESUMO

RiboVision is a visualization and analysis tool for the simultaneous display of multiple layers of diverse information on primary (1D), secondary (2D), and three-dimensional (3D) structures of ribosomes. The ribosome is a macromolecular complex containing ribosomal RNA and ribosomal proteins and is a key component of life responsible for the synthesis of proteins in all living organisms. RiboVision is intended for rapid retrieval, analysis, filtering, and display of a variety of ribosomal data. Preloaded information includes 1D, 2D, and 3D structures augmented by base-pairing, base-stacking, and other molecular interactions. RiboVision is preloaded with rRNA secondary structures, rRNA domains and helical structures, phylogeny, crystallographic thermal factors, etc. RiboVision contains structures of ribosomal proteins and a database of their molecular interactions with rRNA. RiboVision contains preloaded structures and data for two bacterial ribosomes (Thermus thermophilus and Escherichia coli), one archaeal ribosome (Haloarcula marismortui), and three eukaryotic ribosomes (Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens). RiboVision revealed several major discrepancies between the 2D and 3D structures of the rRNAs of the small and large subunits (SSU and LSU). Revised structures mapped with a variety of data are available in RiboVision as well as in a public gallery (). RiboVision is designed to allow users to distill complex data quickly and to easily generate publication-quality images of data mapped onto secondary structures. Users can readily import and analyze their own data in the context of other work. This package allows users to import and map data from CSV files directly onto 1D, 2D, and 3D levels of structure. RiboVision has features in rough analogy with web-based map services capable of seamlessly switching the type of data displayed and the resolution or magnification of the display. RiboVision is available at .


Assuntos
RNA Ribossômico/química , Proteínas Ribossômicas/química , Ribossomos/química , Conformação de Ácido Nucleico , Software
5.
Nucleic Acids Res ; 41(15): 7522-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771137

RESUMO

We present a de novo re-determination of the secondary (2°) structure and domain architecture of the 23S and 5S rRNAs, using 3D structures, determined by X-ray diffraction, as input. In the traditional 2° structure, the center of the 23S rRNA is an extended single strand, which in 3D is seen to be compact and double helical. Accurately assigning nucleotides to helices compels a revision of the 23S rRNA 2° structure. Unlike the traditional 2° structure, the revised 2° structure of the 23S rRNA shows architectural similarity with the 16S rRNA. The revised 2° structure also reveals a clear relationship with the 3D structure and is generalizable to rRNAs of other species from all three domains of life. The 2° structure revision required us to reconsider the domain architecture. We partitioned the 23S rRNA into domains through analysis of molecular interactions, calculations of 2D folding propensities and compactness. The best domain model for the 23S rRNA contains seven domains, not six as previously ascribed. Domain 0 forms the core of the 23S rRNA, to which the other six domains are rooted. Editable 2° structures mapped with various data are provided (http://apollo.chemistry.gatech.edu/RibosomeGallery).


Assuntos
Escherichia coli/genética , RNA Bacteriano/química , RNA Ribossômico 23S/química , RNA Ribossômico 5S/química , Pareamento de Bases , Sequência de Bases , Escherichia coli/química , Evolução Molecular , Conformação de Ácido Nucleico , Filogenia , Dobramento de RNA , Estabilidade de RNA , RNA Bacteriano/genética , Ribossomos/química , Ribossomos/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...