Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Am J Med Sci ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944202

RESUMO

BACKGROUND: Diabetic Nephropathy is one of the most severe complications of Diabetes Mellitus and the main cause of end-stage kidney disease worldwide. Despite the therapies available to control blood glucose and blood pressure, many patients continue to suffer from progressive kidney damage. Chronic hyperglycemia is the main driver of changes observed in diabetes; however, it was recently discovered that inflammation and oxidative stress contribute to the development and progression of kidney damage. Therefore, it is important to search for new pharmacological therapies that stop the progression of DN. Sodium tungstate (NaW) is an effective short and long-term antidiabetic agent in both type 1 and type 2 diabetes models. METHODS: In this study, the effect of NaW on proinflammatory signalling pathways, proinflammatory proteins and fibrosis in the streptozotocin (STZ)-induced type 1 diabetic rat model was analysed using histological analysis, western blotting and immunohistochemistry. RESULTS: NaW treatment in diabetic rats normalize parameters such as glycemia, glucosuria, albuminuria/creatinuria, glomerular damage, and tubulointerstitial damage. NaW decreased the proinflammatory signaling pathway NF-κB, inflammatory markers (ICAM-1, MCP-1 and OPN), profibrotic pathways (TGFß1/Smad2/3), reduced epithelial-mesenchymal transition (α -SMA), and decreased renal fibrosis (type IV collagen). CONCLUSION: NaW could be an effective drug therapy for treating human diabetic nephropathy.

2.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928053

RESUMO

The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.


Assuntos
Doenças dos Peixes , Imunidade Inata , Filogenia , Piscirickettsia , Infecções por Piscirickettsiaceae , Renibacterium , Salmo salar , Animais , Piscirickettsia/genética , Imunidade Inata/genética , Salmo salar/microbiologia , Salmo salar/genética , Salmo salar/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/genética , Infecções por Piscirickettsiaceae/microbiologia , Infecções por Piscirickettsiaceae/imunologia , Infecções por Piscirickettsiaceae/genética , Infecções por Piscirickettsiaceae/veterinária , Renibacterium/genética , Renibacterium/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Evolução Molecular
3.
Harmful Algae ; 125: 102428, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220981

RESUMO

Dinoflagellates of the genus Alexandrium cause Harmful Algal Blooms (HABs) in coastal waters worldwide, damaging marine environments, aquaculture, and human health. They synthesize potent neurotoxic alkaloids known as PSTs (i.e., Paralytic Shellfish Toxins), the etiological agents of PSP (i.e., Paralytic Shellfish Poisoning). In recent decades, the eutrophication of coastal waters with inorganic nitrogen (e.g., nitrate, nitrite, and ammonia) has increased the frequency and scale of HABs. PSTs concentrations within Alexandrium cells can increase by up to 76% after a nitrogen enrichment event; however, the mechanisms that underlie their biosynthesis in dinoflagellates remains unclear. This study combines mass spectrometry, bioinformatics, and toxicology and investigates the expression profiles of PSTs in Alexandrium catenella grown in 0.4, 0.9 and 1.3 mM NaNO3. Pathway analysis of protein expression revealed that tRNA amino acylation, glycolysis, TCA cycle and pigment biosynthesis were upregulated in 0.4 mM and downregulated in 1.3 mM NaNO3 compared to those grown in 0.9 mM NaNO3. Conversely, ATP synthesis, photosynthesis and arginine biosynthesis were downregulated in 0.4 mM and upregulated in 1.3 mM NaNO3. Additionally, the expression of proteins involved in PST biosynthesis (sxtA, sxtG, sxtV, sxtW and sxtZ) and overall PST production like STX, NEO, C1, C2, GTX1-6 and dcGTX2 was higher at lower nitrate concentrations. Therefore, increased nitrogen concentrations increase protein synthesis, photosynthesis, and energy metabolism and decrease enzyme expression in PST biosynthesis and production. This research provides new clues about how the changes in the nitrate concentration can modulate different metabolic pathways and the expression of PST biosynthesis in toxigenic dinoflagellates.


Assuntos
Dinoflagellida , Humanos , Proteômica , Nitratos , Proliferação Nociva de Algas , Nitrogênio
4.
Microb Pathog ; 180: 106122, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094756

RESUMO

Piscirickettsia salmonis is one of the main pathogens causing considerable economic losses in salmonid farming. The DNA gyrase of several pathogenic bacteria has been the target of choice for antibiotic design and discovery for years, due to its key function during DNA replication. In this study, we carried out a combined in silico and in vitro approach to antibiotic discovery targeting the GyrA subunit of Piscirickettsia salmonis. The in silico results of this work showed that flumequine (-6.6 kcal/mol), finafloxacin (-7.2 kcal/mol), rosoxacin (-6.6 kcal/mol), elvitegravir (-6.4 kcal/mol), sarafloxacin (-8.3 kcal/mol), orbifloxacin (-7.9 kcal/mol), and sparfloxacin (-7.2 kcal/mol) are docked with good affinities in the DNA binding domain of the Piscirickettsia salmonis GyrA subunit. In the in vitro inhibition assay, it was observed that most of these molecules inhibit the growth of Piscirickettsia salmonis, except for elvitegravir. We believe that this methodology could help to significantly reduce the time and cost of antibiotic discovery trials to combat Piscirickettsia salmonis within the salmonid farming industry.


Assuntos
Doenças dos Peixes , Piscirickettsia , Animais , Antibacterianos/farmacologia , Piscirickettsia/genética , DNA Girase/genética , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
5.
Biomedicines ; 11(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36830953

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal failure worldwide. Hyperglycemia generates reactive oxygen species (ROS), contributing to diabetic complications, especially in DN. Sodium Tungstate (NaW) is an effective antidiabetic agent for short and long-term treatments of both type 1 and type 2 diabetes models. In this study, we evaluated the effect of NaW on ROS production in bovine neutrophils incubated with platelet-activating factor (PAF) and in HK-2 cells induced by high glucose or H2O2. In addition, we evaluated the effect on iNOS expression in the type 1 diabetic rat model induced with streptozotocin (STZ). NaW inhibited ROS production in PAF-induced bovine neutrophils, and human tubular cells (HK-2) were incubated in high glucose or H2O2. In addition, NaW inhibited iNOS expression in glomeruli and tubular cells in the type 1 diabetic rat. This study demonstrates a new role for NaW as an active antioxidant and its potential use in treating DN.

6.
Microb Pathog ; 174: 105932, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36473669

RESUMO

Renibacterium salmoninarum is one of the oldest known fish bacterial pathogens. This Gram-positive bacterium is the causative agent of Bacterial Kidney Disease (BKD), a chronic infection that primarily infects salmonids at low temperatures. Externally, infected fish may show exophthalmos, skin blisters, ulcerations, and hemorrhages at the base of the fins and along the lateral line. Internally, the kidney, heart, spleen, and liver may show signs of inflammation. The best characterized virulence factor of R. salmoninarum is p57, a 57 kDa protein located on the bacterial cell surface and secreted into surrounding fish tissue. The p57 protein in fish is the main mediator in suppressing the immune system, reducing antibody production, and intervening in cytokine activity. In this review, we will discuss aspects such as single nucleotide polymorphisms (SNPs) that modify the DNA sequence, variants in the number of copies of MSA genes, physical-chemical properties of the signal peptides, and the limited iron conditions that can modify p57 expression and increase the virulence of R. salmoninarum.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Positivas , Animais , Proteômica , Virulência/genética , Proteínas da Membrana Bacteriana Externa/genética , Genômica , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Infecções por Bactérias Gram-Positivas/microbiologia
7.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501507

RESUMO

The development of fish oral vaccines is of great interest to the aquaculture industry due to the possibility of rapid vaccination of a large number of animals at reduced cost. In a previous study, we evaluated the effect of alginate-encapsulated Piscirickettsia salmonis antigens (AEPSA) incorporated in feed, effectively enhancing the immune response in Atlantic salmon (Salmo salar). In this study, we seek to characterize AEPSA produced by ionic gelation using an aerodynamically assisted jetting (AAJ) system, to optimize microencapsulation efficiency (EE%), to assess microparticle stability against environmental (pH, salinity and temperature) and gastrointestinal conditions, and to evaluate microparticle incorporation in fish feed pellets through micro-CT-scanning. The AAJ system was effective in obtaining small microparticles (d < 20 µm) with a high EE% (97.92%). Environmental conditions (pH, salinity and temperature) generated instability in the microparticles, triggering protein release. 62.42% of the protein content was delivered at the intestinal level after in vitro digestion. Finally, micro-CT-scanning images confirmed microparticle incorporation in fish feed pellets. In conclusion, the AAJ system is effective at encapsulating P. salmonis antigens in alginate with a high EE% and a size small enough to be incorporated in fish feed and produce an oral vaccine.

9.
Materials (Basel) ; 15(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36013922

RESUMO

Powder bed fusion technology has undergone a remarkable amount of development in recent years in the field of medical implants due to the advantages associated with it. In many implant applications that demand loads in parts with a high degree of roughness and small dimensions, the mechanical properties, especially fatigue properties, play a key role in the success of the implants. One of the most used materials in this field is Ti-6Al-4V. On the other hand, the high cost of titanium powders makes it necessary to search for suitable powder recycling strategies. In this work, the effects of dimensions and powder recycling on the roughness and the mechanical properties of cylinder specimens were obtained from tensile static and fatigue tests of Ti-6Al4V Extra-Low Interstitial (ELI) parts. Four types of specimens were fabricated by laser powder bed fusion (two dimensions (section diameters of 2 mm and 5 mm) with new powder and with recycled powder). Results show that the oxygen concentration increased with recycling. No significant effects of recycling were observed on the monotonic tensile strength specimens. However, specimens fabricated with recycled powder showed greater roughness, lower ductility, and lower fatigue strength than those fabricated with new powder. On the other hand, the 5-mm-diameter specimens showed slightly better fatigue behavior than the 2-mm-diameter ones.

10.
J Fish Biol ; 101(4): 1021-1032, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35838309

RESUMO

Piscirickettsia salmonis is the etiological agent of Piscirickettsiosis, a severe disease that affects Atlantic salmon (Salmo salar) farmed in Chile and many other areas (Norway, Scotland, Ireland, Canada and the USA). This study investigated the effects of low-dose P. salmonis infection (1 × 102 CFU/ml) on Atlantic salmon. In this study, we challenged fish with an isolated representative of the EM-90 genogroup via intraperitoneal injection for 42 days. Infected fish displayed decreased haematocrit and haemoglobin levels at day 13 post-infection, indicating erythropenia, haemolysis and haemodilution. Conversely, their white blood cell counts increased on days 13 and 21 post-infection. Additionally, their iron levels decreased from day 2 post-infection, indicating iron deficiency and an inability to retrieve stored iron before infection. Their magnesium levels also decreased at day 28 post-infection, possibly due to osmoregulatory problems. Also, we observed an increase in lactate dehydrogenase activity on days 5, 21, and 28 post-infection, suggesting early symptoms of hepatotoxicity. Later analyses determined a decrease in plasma glucose levels from day 2 post-infection. This may be attributed to the hypoxic conditions caused by P. salmonis, leading to an excess utilization of stored carbohydrates. Our results suggest that the blood parameters we studied are useful for monitoring the physiological status of Atlantic salmon infected with P. salmonis.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , Glicemia , Magnésio , Doenças dos Peixes/microbiologia , Ferro , Lactato Desidrogenases , Hemoglobinas
11.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163678

RESUMO

CRISPR/Cas is a prokaryotic self-defense system, widely known for its use as a gene-editing tool. Because of their high specificity to detect DNA and RNA sequences, different CRISPR systems have been adapted for nucleic acid detection. CRISPR detection technologies differ highly among them, since they are based on four of the six major subtypes of CRISPR systems. In just 5 years, the CRISPR diagnostic field has rapidly expanded, growing from a set of specific molecular biology discoveries to multiple FDA-authorized COVID-19 tests and the establishment of several companies. CRISPR-based detection methods are coupled with pre-existing preamplification and readout technologies, achieving sensitivity and reproducibility comparable to the current gold standard nucleic acid detection methods. Moreover, they are very versatile, can be easily implemented to detect emerging pathogens and new clinically relevant mutations, and offer multiplexing capability. The advantages of the CRISPR-based diagnostic approaches are a short sample-to-answer time and no requirement of laboratory settings; they are also much more affordable than current nucleic acid detection procedures. In this review, we summarize the applications and development trends of the CRISPR/Cas13 system in the identification of particular pathogens and mutations and discuss the challenges and future prospects of CRISPR-based diagnostic platforms in biomedicine.


Assuntos
Técnicas e Procedimentos Diagnósticos/tendências , Doença/genética , Edição de Genes/métodos , COVID-19/genética , Sistemas CRISPR-Cas/genética , DNA/genética , Diagnóstico , Humanos , Reprodutibilidade dos Testes , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade
12.
Interact Cardiovasc Thorac Surg ; 34(1): 99-104, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34999813

RESUMO

OBJECTIVES: To study the influence of sternal transection and costal chondrotomies on the stiffness and stresses in the rib cage of adult patients undergoing Nuss pectus excavatum procedure. METHODS: Four pectus excavatum models with different Haller indexes were created by parameterizing a 3D model of a rib cage obtained based on a computed tomography scan of a patient with no pectus deformity. Using the finite element method, insertion of intrathoracic bars into all models was simulated in 3 conditions, namely, non-intervened, transverse sternal section and costal chondrotomies. Stiffness, stress distribution and maximum stresses for each case were obtained and compared. RESULTS: Transverse sternotomy provided a reduction of 44% to 54% in the stiffness of the rib cage, depending on the Haller index analysed, while chondrotomies promoted a stiffness reduction of 70%. Stress distribution in the rib cage followed similar pattern for all the tested Haller index, but the maximum stress decreased by 36% when performing a transverse sternotomy, whereas when performing costal chondrotomies, it decreased by 47%. CONCLUSIONS: Computational results report that transverse sternotomy reduces appreciably the stiffness of the rib cage, while costal chondrotomies promote even a higher stiffness reduction. Thus, these surgical procedures could improve the clinical outcomes of adult patients undergoing a pectus excavatum repair.


Assuntos
Tórax em Funil , Procedimentos de Cirurgia Plástica , Adulto , Tórax em Funil/diagnóstico por imagem , Tórax em Funil/cirurgia , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Costelas/diagnóstico por imagem , Costelas/cirurgia , Esternotomia , Esterno/cirurgia
14.
Front Microbiol ; 12: 673216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177855

RESUMO

Piscirickettsia salmonis is a bacterial pathogen that severely impact the aquaculture in several countries as Canada, Scotland, Ireland, Norway, and Chile. It provokes Piscirickettsiosis outbreaks in the marine phase of salmonid farming, resulting in economic losses. The monophyletic genogroup LF-89 and a divergent genogroup EM-90 are responsible for the most severe Piscirickettsiosis outbreaks in Chile. Therefore, the development of methods for quick genotyping of P. salmonis genogroups in field samples is vital for veterinary diagnoses and understanding the population structure of this pathogen. The present study reports the development of a multiplex PCR for genotyping LF-89 and EM-90 genogroups based on comparative genomics of 73 fully sequenced P. salmonis genomes. The results revealed 2,322 sequences shared between 35 LF-89 genomes, 2,280 sequences in the core-genome of 38 EM-90 genomes, and 331 and 534 accessory coding sequences each genogroup, respectively. A total of 1,801 clusters of coding sequences were shared among all tested genomes of P. salmonis (LF-89 and EM-90), with 253 and 291 unique sequences for LF-89 and EM-90 genogroups, respectively. The Multiplex-1 prototype was chosen for reliable genotyping because of differences in annealing temperatures and respective reaction efficiencies. This method also identified the pathogen in field samples infected with LF-89 or EM-90 strains, which is not possible with other methods currently available. Finally, the genome-based multiplex PCR protocol presented in this study is a rapid and affordable alternative to classical sequencing of PCR products and analyzing the length of restriction fragment polymorphisms.

15.
Front Immunol ; 12: 602689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679740

RESUMO

An effective and economical vaccine against the Piscirickettsia salmonis pathogen is needed for sustainable salmon farming and to reduce disease-related economic losses. Consequently, the aquaculture industry urgently needs to investigate efficient prophylactic measures. Three protein-based vaccine prototypes against Piscirickettsia salmonis were prepared from a highly pathogenic Chilean isolate. Only one vaccine effectively protected Atlantic salmon (Salmo salar), in correlation with the induction of Piscirickettsia-specific IgM antibodies and a high induction of transcripts encoding pro-inflammatory cytokines (i.e., Il-1ß and TNF-α). In addition, we studied the proteome fraction protein of P. salmonis strain Austral-005 using multidimensional protein identification technology. The analyzes identified 87 proteins of different subcellular origins, such as the cytoplasmic and membrane compartment, where many of them have virulence functions. The other two prototypes activated only the innate immune responses, but did not protect Salmo salar against P. salmonis. These results suggest that the knowledge of the formulation of vaccines based on P. salmonis proteins is useful as an effective therapy, this demonstrates the importance of the different research tools to improve the study of the different immune responses, resistance to diseases in the Atlantic salmon. We suggest that this vaccine can help prevent widespread infection by P. salmonis, in addition to being able to be used as a booster after a primary vaccine to maintain high levels of circulating protective antibodies, greatly helping to reduce the economic losses caused by the pathogen.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Doenças dos Peixes , Piscirickettsia/imunologia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Infecções por Piscirickettsiaceae/imunologia , Infecções por Piscirickettsiaceae/microbiologia , Infecções por Piscirickettsiaceae/prevenção & controle , Infecções por Piscirickettsiaceae/veterinária , Salmo salar/imunologia , Salmo salar/microbiologia
16.
Cir Cir ; 89(1): 97-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33498069

RESUMO

BACKGROUND: Heterotopic ossification consists in abnormal differentiation of mesenchymal cells into osteoblastic cells, which may occur in the abdominal cavity. CASE REPORT: A 54-year-old male who presents with small bowel obstruction, performing a laparotomy, adhesiolysis, and managed with an open abdomen with Bogota bag; the abdominal wall was closed on the 5th post-operative day. Due to recurrent symptoms of intestinal obstruction, he required a re-laparotomy after 14 days, finding a frozen abdomen with midline calcified peritoneum. CONCLUSION: This entity is a rare benign form of ossification, associated with an inflammatory environment due to trauma after multiple abdominal interventions.


ANTECEDENTES: La osificación heterotópica consiste en la diferenciación anómala de las células mesenquimatosas en osteoblásticas que puede ocurrir en la cavidad abdominal. CASO CLÍNICO: Varón de 54 años con obstrucción intestinal que amerita tratamiento quirúrgico con laparotomía, adherenciólisis y manejo con bolsa de Bogotá para abdomen abierto. Se realizó el cierre de la pared abdominal en el quinto día posquirúrgico. Presentó recurrencia de la oclusión intestinal y se realizó una nueva laparotomía tras 14 días, encontrando un abdomen congelado con calcificación peritoneal. CONCLUSIÓN: Esta es una forma rara y benigna de osificación asociada a un ambiente proinflamatorio debido al traumatismo tras múltiples intervenciones quirúrgicas.


Assuntos
Cavidade Abdominal , Ossificação Heterotópica , Abdome/cirurgia , Humanos , Laparotomia , Masculino , Pessoa de Meia-Idade , Ossificação Heterotópica/complicações , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/cirurgia , Osteogênese , Peritônio
17.
Dev Comp Immunol ; 114: 103865, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918929

RESUMO

The nucleotide binding oligomerization domain like receptors, or NOD like receptors (NLRs), are intracellular receptors responsible for recognizing pathogens in vertebrates. Several NLR mammalian models have been characterized and analyzed but few studies have been performed with teleost species. In this study, we analyzed the nucleotide sequence of six mRNA variants of NLRC3 in Atlantic salmon (SsNLRC3), and we deduced the amino acid sequence coding for two different isoforms with a total length of 1135 amino acids and 1093 amino acids. We analyzed the phylogeny of all variants, including a Piscirickettsia salmonis infection in Atlantic salmon. All variants and their expression pattern during infection were analyzed using real-time qPCR. One of the analyzed variants was over-expressed during the early stages of Piscirickettsia salmonis infection, and we were able to identify two different SsNLRC3 isoforms. Lastly, we observed that an alteration in the amino acid sequence of one of the isoforms can directly affect the pathogen recognition function.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas NLR/genética , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Salmo salar/imunologia , Animais , Clonagem Molecular , Doenças dos Peixes/imunologia , Variação Genética , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas NLR/metabolismo , Filogenia , Infecções por Piscirickettsiaceae/imunologia , Análise de Sequência , Transcriptoma , Proteínas de Peixe-Zebra/genética
18.
Orthop J Sports Med ; 9(9): 23259671211031652, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35146030

RESUMO

BACKGROUND: It is not clear whether the mechanical strength of adjustable-loop suspension devices (ALDs) in anterior cruciate ligament (ACL) reconstruction is device dependent and if these constructs are different from those of an interference screw. PURPOSE: To compare the biomechanical differences of 2 types of ALDs versus an interference screw. STUDY DESIGN: Controlled laboratory study. METHODS: ACL reconstruction was performed on porcine femurs and bovine extensor tendons with 3 types of fixation devices: interference screw, UltraButton (UB) ALD, and TightRope (TR) ALD (n = 10 for each). In addition to specimen testing, isolated testing of the 2 ALDs was performed. The loading protocol consisted of 3 stages: preload (static 150 N load for 5 minutes), cyclic load (50-250 N at 1 Hz for 1000 cycles), and load to failure (crosshead speed 50 mm/min). Displacement at different cycles, ultimate failure load, yield load, stiffness, and failure mode were recorded. RESULTS: In specimen testing, displacement of the ALDs at the 1000th cycle was similar (3.42 ± 1.34 mm for TR and 3.39 ± 0.92 mm for UB), but both were significantly lower than that of the interference screw (7.54 ± 3.18 mm) (P < .001 for both). The yield load of the UB (547 ± 173 N) was higher than that of the TR (420 ± 72 N) (P = .033) or the interference screw (386 ± 51 N; P = .013), with no significant difference between the latter 2. In isolated device testing, the ultimate failure load of the TR (862 ± 64 N) was significantly lower than that of the UB (1879 ± 126 N) (P < .001). CONCLUSION: Both ALDs showed significantly less displacement in cyclic loading at ultimate failure than the interference screw. The yield load of the UB was significantly higher than that of the other 2. The ultimate failure occurred at a significantly higher load for UB than it did for TR in isolated device testing. CLINICAL RELEVANCE: Both UB and TR provided stronger fixation than an interference screw. Although difficult to assess, intrinsic differences in the mechanical properties of these ALDs may affect clinical outcomes.

19.
Microorganisms ; 8(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092013

RESUMO

Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, an infectious disease with a high economic impact on the Chilean salmonid aquaculture industry. This bacterium produces biofilm as a potential resistance and persistence strategy against stressful environmental stimuli. However, the in vitro culture conditions that modulate biofilm formation as well as the effect of sessile bacteria on virulence and immune gene expression in host cells have not been described for P. salmonis. Therefore, this study aimed to analyze the biofilm formation by P. salmonis isolates under several NaCl and iron concentrations and to evaluate the virulence of planktonic and sessile bacteria, together with the immune gene expression induced by these bacterial conditions in an Atlantic salmon macrophage cell line. Our results showed that NaCl and Fe significantly increased biofilm production in the LF-89 type strain and EM-90-like isolates. Additionally, the planktonic EM-90 isolate and sessile LF-89 generated the highest virulence levels, associated with differential expression of il-1ß, il-8, nf-κb, and iκb-α genes in SHK-1 cells. These results suggest that there is no single virulence pattern or gene expression profile induced by the planktonic or sessile condition of P. salmonis, which are dependent on each strain and bacterial condition used.

20.
Mol Immunol ; 127: 87-94, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32947170

RESUMO

Prolactin has several immune functions in fish however, the effects on innate and specific components of rainbow trout immunity are currently unknown. Therefore in this study, prolactin peptide (pPRL) injection in rainbow trout generated anti-PRL antibodies that were confirmed through Western blot assays of fish brain tissue extract. At the same time, this group of fish was immunized with a viral antigen (VP2) and the specific antibody titer generated by the rainbow trout was subsequently determined, as well as the sero-neutralizing capacity of the antibodies. Interestingly, this group of fish (pPRL-VP2) generated approximately 150% less antibodies compared with fish immunized only with the viral antigen (VP2), and pPRL-VP2 fish increased their cortisol level by 4 times compared to the control. Additionally, through qPCR assay, we determined that the pPRL-VP2 fish group decreased pro-inflammatory transcript expression, and the serum of these (pPRL-VP2) fish stimulated ROS production in untreated fish leukocytes, a phenomenon that was blocked by the pharmacological cortisol receptor inhibitor (RU486). Collectively, this is the first report that indicates that pPRL could modulate both components of immunity in rainbow trout.


Assuntos
Anticorpos/imunologia , Hidrocortisona/metabolismo , Imunidade , Oncorhynchus mykiss/imunologia , Prolactina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sequência de Aminoácidos , Animais , Antígenos Virais/imunologia , Imunidade/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunoglobulina M/imunologia , Modelos Biológicos , Prolactina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...