Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mult Scler Relat Disord ; 78: 104940, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37603930

RESUMO

INTRODUCTION: Antibodies to cell surface proteins of astrocytes have been described in chronic inflammatory demyelinating disorders (CIDD) of the central nervous system including multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Our aim was to identify novel anti-astrocyte autoantibodies in relapsing remitting MS (RRMS) patients presenting predominantly with spinal cord and optic nerve attacks (MS-SCON). METHODS: Sera of 29 MS-SCON patients and 36 healthy controls were screened with indirect immunofluorescence to identify IgG reacting with human astrocyte cultures. Putative target autoantigens were investigated with immunoprecipitation (IP) and liquid chromatography-mass/mass spectrometry (LC-MS/MS) studies using cultured human astrocytes. Validation of LC-MS/MS results was carried out by IP and ELISA. RESULTS: Antibodies to astrocytic cell surface antigens were detected in 5 MS-SCON patients by immunocytochemistry. LC-MS/MS analysis identified chloride intracellular channel protein-1 (CLIC1) as the single common membrane antigen in 2 patients with MS-SCON. IP experiments performed with the commercial CLIC1 antibody confirmed CLIC1-antibody. Home made ELISA using recombinant CLIC1 protein as the target antigen identified CLIC1 antibodies in 9/29 MS-SCON and 3/15 relapsing inflammatory optic neuritis (RION) patients but in none of the 30 NMOSD patients, 36 RRMS patients with only one or no myelitis/optic neuritis attacks and 36 healthy controls. Patients with CLIC1-antibodies showed trends towards exhibiting reduced disability scores. CONCLUSION: CLIC1-antibody was identified for the first time in MS and RION patients, confirming once again anti-astrocytic autoimmunity in CIDD. CLIC1-antibody may potentially be utilized as a diagnostic biomarker for differentiation of MS from NMOSD.

2.
Immunol Lett ; 261: 17-24, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37459957

RESUMO

BACKGROUND: West Syndrome (WS) is an epileptic encephalopathy that typically occurs in infants and is characterized by hypsarrhythmia, infantile spasms, and neurodevelopmental impairment. Demonstration of autoantibodies and cytokines in some WS patients and favorable response to immunotherapy have implicated inflammation as a putative trigger of epileptiform activity in WS. Our aim was to provide additional support for altered inflammatory responses in WS through peripheral blood immunophenotype analysis. METHODS: Eight WS cases treated with synacthen and 11 age- and sex-matched healthy volunteers were included. Peripheral blood mononuclear cells (PBMC) were isolated and immunophenotyping was performed in pre-treatment baseline (8 patients) and 3 months post-treatment (6 patients) samples. The analysis included PBMC expressing NFκB transcription and NLRP3 inflammasome factors. RESULTS: In pre-treatment baseline samples, switched memory B cells (CD19+IgD-CD27+) were significantly reduced, whereas plasma cells (CD19+CD38+CD138+) and cytotoxic T cells (CD3+CD8+) were significantly increased. Regulatory T and B cell ratios were not significantly altered. Synacthen treatment only marginally reduced helper T cell ratios and did not significantly change other T, B, NK and NKT cell and monocyte ratios. CONCLUSIONS: Our findings lend further support for the involvement of inflammation-related mechanisms in WS. New-onset WS patients are inclined to display increased plasma cells in the peripheral blood. Synacthen treatment does not show a beneficial effect on most effector acquired and innate immunity subsets.


Assuntos
Células T Matadoras Naturais , Espasmos Infantis , Lactente , Humanos , Espasmos Infantis/tratamento farmacológico , Linfócitos B , Plasmócitos , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...