Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(14): 2843-2861, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38755258

RESUMO

Glycine-12 mutations in the GTPase KRAS (KRASG12) are an initiating event for development of lung adenocarcinoma (LUAD). KRASG12 mutations promote cell-intrinsic rewiring of alveolar type-II progenitor (AT2) cells, but to what extent such changes interplay with lung homeostasis and cell fate pathways is unclear. Here, we generated single-cell RNA-seq (scRNA-seq) profiles from AT2-mesenchyme organoid co-cultures, mice, and stage-IA LUAD patients, identifying conserved regulators of AT2 transcriptional dynamics and defining the impact of KRASG12D mutation with temporal resolution. In AT2WT organoids, we found a transient injury/plasticity state preceding AT2 self-renewal and AT1 differentiation. Early-stage AT2KRAS cells exhibited perturbed gene expression dynamics, most notably retention of the injury/plasticity state. The injury state in AT2KRAS cells of patients, mice, and organoids was distinguishable from AT2WT states via altered receptor expression, including co-expression of ITGA3 and SRC. The combination of clinically relevant KRASG12D and SRC inhibitors impaired AT2KRAS organoid growth. Together, our data show that an injury/plasticity state essential for lung repair is co-opted during AT2 self-renewal and LUAD initiation, suggesting that early-stage LUAD may be susceptible to interventions that target specifically the oncogenic nature of this cell state.


Assuntos
Neoplasias Pulmonares , Organoides , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Humanos , Organoides/metabolismo , Organoides/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Mutação , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Quinases da Família src/metabolismo , Quinases da Família src/genética
2.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617297

RESUMO

Acute injury in the airways or the lung activates local progenitors and stimulates changes in cell-cell interactions to restore homeostasis, but it is not appreciated how more distant niches are impacted. We utilized mouse models of airway-specific epithelial injury to examine secondary tissue-wide alveolar, immune, and mesenchymal responses. Single-cell transcriptomics and in vivo validation revealed transient, tissue-wide proliferation of alveolar type 2 (AT2) progenitor cells after club cell-specific ablation. The AT2 cell proliferative response was reliant on alveolar macrophages (AMs) via upregulation of Spp1 which encodes the secreted factor Osteopontin. A previously uncharacterized mesenchymal population we termed Mesenchymal Airway/Adventitial Niche Cell 2 (MANC2) also exhibited dynamic changes in abundance and a pro-fibrotic transcriptional signature after club cell ablation in an AM-dependent manner. Overall, these results demonstrate that acute airway damage can trigger distal lung responses including altered cell-cell interactions that may contribute to potential vulnerabilities for further dysregulation and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...