Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 11(4): 335-341, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804500

RESUMO

Peptidoglycan is an essential cell wall component that maintains the morphology and viability of nearly all bacteria. Its biosynthesis requires periplasmic transpeptidation reactions, which construct peptide crosslinkages between polysaccharide chains to endow mechanical strength. However, tracking the transpeptidation reaction in vivo and in vitro is challenging, mainly due to the lack of efficient, biocompatible probes. Here, we report the design, synthesis and application of rotor-fluorogenic D-amino acids (RfDAAs), enabling real-time, continuous tracking of transpeptidation reactions. These probes allow peptidoglycan biosynthesis to be monitored in real time by visualizing transpeptidase reactions in live cells, as well as real-time activity assays of D,D- and L,D-transpeptidases and sortases in vitro. The unique ability of RfDAAs to become fluorescent when incorporated into peptidoglycan provides a powerful new tool to study peptidoglycan biosynthesis with high temporal resolution and prospectively enable high-throughput screening for inhibitors of peptidoglycan biosynthesis.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/biossíntese , Peptidil Transferases/metabolismo , Aminoácidos/química , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Ensaios Enzimáticos/métodos , Cinética , Streptomyces/enzimologia , Streptomyces/metabolismo
2.
Chem Sci ; 8(9): 6313-6321, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989665

RESUMO

Fluorescent d-amino acids (FDAAs) enable efficient in situ labeling of peptidoglycan in diverse bacterial species. Conducted by enzymes involved in peptidoglycan biosynthesis, FDAA labeling allows specific probing of cell wall formation/remodeling activity, bacterial growth and cell morphology. Their broad application and high biocompatibility have made FDAAs an important and effective tool for studies of peptidoglycan synthesis and dynamics, which, in turn, has created a demand for the development of new FDAA probes. Here, we report the synthesis of new FDAAs, with emission wavelengths that span the entire visible spectrum. We also provide data to characterize their photochemical and physical properties, and we demonstrate their utility for visualizing peptidoglycan synthesis in Gram-negative and Gram-positive bacterial species. Finally, we show the permeability of FDAAs toward the outer-membrane of Gram-negative organisms, pinpointing the probes available for effective labeling in these species. This improved FDAA toolkit will enable numerous applications for the study of peptidoglycan biosynthesis and dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...