Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cyborg Bionic Syst ; 5: 0141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011055

RESUMO

In recent years, the functionality of myoelectric prosthetic hands has improved as motors have become smaller and controls have become more advanced. Attempts have been made to reproduce the rotation and flexion of the wrist by adding degrees of freedom to the wrist joint. However, it is still difficult to fully reproduce the functionality of the wrist joint owing to the weight of the prosthesis and size limitations. In this study, we developed a new socket and prosthetic hand control system that does not interfere with the wrist joint motion. This allows individuals with hand defects who previously used prosthetic hands with fixed wrist joints to freely use their remaining wrist functionality. In the pick-and-place experiment, where blocks were moved from higher to lower locations, we confirmed that the proposed system resulted in a lower elbow position compared with the traditional prosthesis, and the number of blocks transported increased. This significantly reduced the compensatory motion of the elbow and improved the user's performance compared with the use of a conventional prosthetic hand. This study demonstrates the usefulness of a new myoelectric prosthetic hand that utilizes the residual functions of people with hand deficiencies, which have not been utilized in the past, and the direction of its development.

2.
Soft Robot ; 10(2): 345-353, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36787451

RESUMO

In this study, we investigated the effect of the presence or absence of fingernails on precision grasping using artificial anthropomimetic fingers. We hypothesized that fingernails improve precision grasping performance by increasing the friction coefficient while suppressing fingertip deformation. To test our hypothesis, we developed artificial fingertips, each composed of bone, nail, skin, and soft tissue, and fabricated three types of artificial fingers with different skin softness grades and artificial fingers without nails as the control condition. Pullout experiments of cylindrical objects and T-shaped blocks were conducted using the developed artificial fingertips with and without nails, and the magnitude of the holding force was compared. The nail contributed to object grasping stability because the magnitude of the holding force was significantly increased by the presence of the nail in the artificial fingertip with soft skin. The rate of increase in the magnitude of the holding force of the T-shaped block was more significant (3.10 times maximum) compared with the cylindrical object (1.08 times maximum) because the finger pulp deformation was suppressed by the nail, and the form closure, that is, geometric constraint, was formed for the grasping object. The results of this study show that soft fingertips and hard nails can significantly improve the grasping performance of soft robotic hands. And these results suggest that the human nail improves precision grasping performance by forming geometric constraints on the grasped object, suppressing finger pulp deformation.


Assuntos
Unhas , Robótica , Humanos , Dedos , Mãos , Robótica/métodos , Pele
3.
Sci Rep ; 11(1): 10402, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001942

RESUMO

In morphology field, the functions of an asymmetric-shaped distal phalanx in human finger have only been inferred. In this study, we used an engineering approach to empirically examine the effects of the shape of distal phalanx on the ability of precision grasping. Hence, we developed artificial fingertips consisting of four parts, namely bones, nails, skin, and subcutaneous tissue, that substitute the actual human fingertips. Furthermore, we proposed a method to evaluate the grasping ability of artificial fingers. When a cylindrical object was grasped by an artificial fingertip, a pull-out experiment was conducted. Thus, the asymmetric type was found to be superior in terms of drawing force, holding time, and work of friction than the symmetric type. Our results clearly demonstrate that the asymmetric shape, particularly the mirror-reversed shape of the distal phalanx, improves the ability of precision grasping and suggests that the human distal phalanx is shaped favorably for object grasping.


Assuntos
Fenômenos Biomecânicos/fisiologia , Desenho de Equipamento , Falanges dos Dedos da Mão/anatomia & histologia , Dedos/fisiologia , Robótica/métodos , Falanges dos Dedos da Mão/diagnóstico por imagem , Dedos/anatomia & histologia , Dedos/diagnóstico por imagem , Força da Mão/fisiologia , Humanos , Modelos Anatômicos , Impressão Tridimensional
4.
Front Neurorobot ; 12: 48, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116188

RESUMO

In this study, a one-degree-of-freedom myoelectric prosthesis system was proposed using a Parent Wireless Assistive Interface (PWAI) that allowed an external assistant (e. g., the parent of the user) to immediately adjust the parameters of the prosthetic hand controller. In the PWAI, the myoelectric potential of use of the upper limb was plotted on an external terminal in real time. Simultaneously, the assistant adjusted the parameters of the prosthetic hand control device and manually manipulated the prosthetic hand. With these functions, children that have difficulty verbally communicating could obtain properly adjusted prosthetic hands. In addition, non-experts could easily adjust and manually manipulate the prosthesis; therefore, training for the prosthetic hands could be performed at home. Two types of hand motion discrimination methods were constructed in this study of the myoelectric control system: (1) a threshold control based on the myoelectric potential amplitude information and (2) a pattern recognition of the frequency domain features. In an evaluation test of the prosthesis threshold control system, child subjects achieved discrimination rates as high as 89%, compared with 96% achieved by adult subjects. Furthermore, the high discrimination rate was maintained by sequentially updating the threshold value. In addition, a discrimination rate of 82% on average was obtained by recognizing three motions using the pattern recognition method.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26737363

RESUMO

Prosthetic hands are desired by those who have lost a hand or both hands not only for decoration but also for the functions to help them with their activities of daily living (ADL). Prosthetic robotic hands that are developed to fully realize the function of a human hand are usually too expensive to be economically available, difficult to operate and maintain, or over heavy for longtime wearing. The aim of this study is therefore to develop a simplified prosthetic hand (sim-PH), which is to be controlled by myoelectric signals from the user, to realize the most important grasp motions in ADL by trading off the cost and performance. This paper reports the structure design of a two-DoF sim-PH with two motors to drive the CM joint of the thumb and the interlocked MP joints of the other four fingers. In order to optimize the structure, the model of the sim-PH was proposed based on which 7 sim-PHs with different structural parameters were manufactured and tested in a pick-and-place experiment. Correspondence analysis of the experimental results clarified the relationship between the hand functions and the shapes of fingers.


Assuntos
Membros Artificiais , Mãos/fisiologia , Atividades Cotidianas , Eletromiografia/instrumentação , Eletromiografia/métodos , Exoesqueleto Energizado , Dedos/fisiologia , Força da Mão/fisiologia , Humanos , Desenho de Prótese , Robótica/métodos , Polegar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...