Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(17): 12276-12288, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590088

RESUMO

Organohydrides are an important class of organic compounds that can provide hydride anions for chemical and biochemical reactions, as demonstrated by reduced nicotinamide adenine dinucleotides serving as important natural redox cofactors. The coupling of hydride transfer from the organohydride to the substrate and subsequent regeneration of the organohydride from its oxidized form can realize organohydride-catalyzed reduction reactions. Depending on the structure of the organohydride, its hydridicity and ease of regeneration vary. Benzimidazoline (BIH) is one of the strongest synthetic C-H hydride donors; however, its reductive regeneration requires highly reducing conditions. In this study, we synthesized various oxidized and reduced forms of BIH derivatives with aryl groups at the 2-position and investigated their photophysical and electrochemical properties. 4-(Dimethylamino)phenyl-substituted BIH exhibited salient red-shifted absorption compared with other synthesized BIH derivatives, and visible-light-driven regeneration without using an external photosensitizer was achieved. This knowledge has significant implications for the future development of solar-energy-based catalytic photoreduction technologies that utilize organohydride regeneration strategies.

2.
J Org Chem ; 86(3): 2545-2555, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33439026

RESUMO

Methods to activate the relatively stable ether C-O bonds and convert them to other functional groups are desirable. One-electron reduction of ethers is a potentially promising route to cleave the C-O bond. However, owing to the highly negative redox potential of alkyl aryl ethers (Ered < -2.6 V vs SCE), this mode of ether C-O bond activation is challenging. Herein, we report the visible-light-induced photocatalytic cleavage of the alkyl aryl ether C-O bond using a carbazole-based organic photocatalyst (PC). Both benzylic and non-benzylic aryl ethers underwent C-O bond cleavage to form the corresponding phenol products. Addition of Cs2CO3 was beneficial, especially in reactions using a N-H carbazole PC. The reaction was proposed to occur via single-electron transfer (SET) from the excited-state carbazole to the substrate ether. Interaction of the N-H carbazole PC with Cs2CO3 via hydrogen bonding exists, which enables a deprotonation-assisted electron-transfer mechanism to operate. In addition, the Lewis acidic Cs cation interacts with the substrate alkyl aryl ether to activate it as an electron acceptor. The high reducing ability of the carbazole combined with the beneficial effects of Cs2CO3 made this otherwise formidable SET event possible.

3.
J Org Chem ; 84(9): 5535-5547, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30973736

RESUMO

Environment-sensitive luminophoric molecules have played an important role in the fields of smart materials, sensing, and bioimaging. In this study, it was demonstrated that depending on the substituents, 9-aryl-3-aminocarbazoles can display aggregation-induced emission and solvatofluorochromism, and the operating mechanism was clarified. The application of these compounds to lipid droplet imaging and fluorescent probes for cysteamine was demonstrated.

4.
J Org Chem ; 83(16): 9381-9390, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30005575

RESUMO

Carbon radicals are reactive species useful in various organic transformations. The C-X bond cleavage of organohalides by photoirradiation is a common method to generate carbon radicals in a controlled fashion. The use of organochloride substrates is still a formidable challenge due to the low reduction potential and the high dissociation energy of the C-Cl bond. In this report, we address these issues by using a nonmetal organic molecule with a relatively simple structure as a photocatalyst. In this catalyst (bis(dimethylamino)carbazole), the amino groups increase both the HOMO and LUMO energy levels, especially in the former. As a result, compared to the parent molecule, the new catalyst shows experimentally red-shifted absorption in the visible region and forms an excited state with better reducing capability. This photocatalyst was used in the reduction of unactivated aryl chlorides and alkyl chlorides in the presence of hydrogen atom donor at room temperature. The catalytic system can also be applied to the coupling of aryl chlorides with electron-rich arene and heteroarenes to affect the C-C bond-forming reactions. Our mechanistic study results support the assumption that carbon radicals are formed from the organochlorides via a single-electron-transfer step.

5.
Chem Asian J ; 11(14): 2006-10, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27305449

RESUMO

The photoinduced persistent intramolecular charge-transfer state of 4-carbazolyl-3-(trifluoromethyl)benzoic acid was confirmed. It showed a higher catalytic activity in terms of yield and selectivity in the photochemical reduction of alkyl halides compared to the parent carbazole. Even unactivated primary alkyl bromides could be reduced by this photocatalyst. The high catalytic activity is rationalized by considering the slower backward single-electron transfer owing to the spatial separation of the donor and acceptor subunits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...