Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15760, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977828

RESUMO

Manufacturing regenerative medicine requires continuous monitoring of pluripotent cell culture and quality assessment while eliminating cell destruction and contaminants. In this study, we employed a novel method to monitor the pluripotency of stem cells through image analysis, avoiding the traditionally used invasive procedures. This approach employs machine learning algorithms to analyze stem cell images to predict the expression of pluripotency markers, such as OCT4 and NANOG, without physically interacting with or harming cells. We cultured induced pluripotent stem cells under various conditions to induce different pluripotent states and imaged the cells using bright-field microscopy. Pluripotency states of induced pluripotent stem cells were assessed using invasive methods, including qPCR, immunostaining, flow cytometry, and RNA sequencing. Unsupervised and semi-supervised learning models were applied to evaluate the results and accurately predict the pluripotency of the cells using only image analysis. Our approach directly links images to invasive assessment results, making the analysis of cell labeling and annotation of cells in images by experts dispensable. This core achievement not only contributes for safer and more reliable stem cell research but also opens new avenues for real-time monitoring and quality control in regenerative medicine manufacturing. Our research fills an important gap in the field by providing a viable, noninvasive alternative to traditional invasive methods for assessing pluripotency. This innovation is expected to make a significant contribution to improving regenerative medicine manufacturing because it will enable a more detailed and feasible understanding of cellular status during the manufacturing process.


Assuntos
Biomarcadores , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Biomarcadores/metabolismo , Humanos , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Medicina Regenerativa/métodos , Citometria de Fluxo/métodos , Animais , Diferenciação Celular , Células Cultivadas
2.
J Toxicol Sci ; 49(3): 105-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432953

RESUMO

With the advancement of large-scale omics technologies, particularly transcriptomics data sets on drug and treatment response repositories available in public domain, toxicogenomics has emerged as a key field in safety pharmacology and chemical risk assessment. Traditional statistics-based bioinformatics analysis poses challenges in its application across multidimensional toxicogenomic data, including administration time, dosage, and gene expression levels. Motivated by the visual inspection workflow of field experts to augment their efficiency of screening significant genes to derive meaningful insights, together with the ability of deep neural architectures to learn the image signals, we developed DTox, a deep neural network-based in visio approach. Using the Percellome toxicogenomics database, instead of utilizing the numerical gene expression values of the transcripts (gene probes of the microarray) for dose-time combinations, DTox learned the image representation of 3D surface plots of distinct time and dosage data points to train the classifier on the experts' labels of gene probe significance. DTox outperformed statistical threshold-based bioinformatics and machine learning approaches based on numerical expression values. This result shows the ability of image-driven neural networks to overcome the limitations of classical numeric value-based approaches. Further, by augmenting the model with explainability modules, our study showed the potential to reveal the visual analysis process of human experts in toxicogenomics through the model weights. While the current work demonstrates the application of the DTox model in toxicogenomic studies, it can be further generalized as an in visio approach for multi-dimensional numeric data with applications in various fields in medical data sciences.


Assuntos
Biologia Computacional , Toxicogenética , Humanos , Perfilação da Expressão Gênica , Aprendizado de Máquina , Redes Neurais de Computação
3.
Sci Rep ; 13(1): 11765, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474783

RESUMO

NMN is the direct precursor of nicotinamide adenine dinucleotide (NAD+) and is considered as a key factor for increasing NAD+ levels and mitochondrial activity in cells. In this study, based on transcriptome analysis, we showed that NMN alleviates the poly(I:C)-induced inflammatory response in cultures of two types of human primary cells, human pulmonary microvascular endothelial cells (HPMECs) and human coronary artery endothelial cells (HCAECs). Major inflammatory mediators, including IL6 and PARP family members, were grouped into coexpressed gene modules and significantly downregulated under NMN exposure in poly(I:C)-activated conditions in both cell types. The Bayesian network analysis of module hub genes predicted common genes, including eukaryotic translation initiation factor 4B (EIF4B), and distinct genes, such as platelet-derived growth factor binding molecules, in HCAECs, which potentially regulate the identified inflammation modules. These results suggest a robust regulatory mechanism by which NMN alleviates inflammatory pathway activation, which may open up the possibility of a new role for NMN replenishment in the treatment of chronic or acute inflammation.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , Mononucleotídeo de Nicotinamida/farmacologia , NAD/metabolismo , Células Endoteliais/metabolismo , Teorema de Bayes , Cultura Primária de Células , Inflamação/genética
4.
Antioxidants (Basel) ; 12(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36829799

RESUMO

Pathological examination of formalin-fixed paraffin-embedded (FFPE) needle-biopsied samples by certified pathologists represents the gold standard for differential diagnosis between ductal carcinoma in situ (DCIS) and invasive breast cancers (IBC), while information of marker metabolites in the samples is lost in the samples. Infrared laser-scanning large-area surface-enhanced Raman spectroscopy (SERS) equipped with gold-nanoparticle-based SERS substrate enables us to visualize metabolites in fresh-frozen needle-biopsied samples with spatial matching between SERS and HE staining images with pathological annotations. DCIS (n = 14) and IBC (n = 32) samples generated many different SERS peaks in finger-print regions of SERS spectra among pathologically annotated lesions including cancer cell nests and the surrounding stroma. The results showed that SERS peaks in IBC stroma exhibit significantly increased polysulfide that coincides with decreased hypotaurine as compared with DCIS, suggesting that alterations of these redox metabolites account for fingerprints of desmoplastic reactions to distinguish IBC from DCIS. Furthermore, the application of supervised machine learning to the stroma-specific multiple SERS signals enables us to support automated differential diagnosis with high accuracy. The results suggest that SERS-derived biochemical fingerprints derived from redox metabolites account for a hallmark of desmoplastic reaction of IBC that is absent in DCIS, and thus, they serve as a useful method for precision diagnosis in breast cancer.

5.
Front Physiol ; 13: 933069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117696

RESUMO

Text mining has been shown to be an auxiliary but key driver for modeling, data harmonization, and interpretation in bio-medicine. Scientific literature holds a wealth of information and embodies cumulative knowledge and remains the core basis on which mechanistic pathways, molecular databases, and models are built and refined. Text mining provides the necessary tools to automatically harness the potential of text. In this study, we show the potential of large-scale text mining for deriving novel insights, with a focus on the growing field of microbiome. We first collected the complete set of abstracts relevant to the microbiome from PubMed and used our text mining and intelligence platform Taxila for analysis. We drive the usefulness of text mining using two case studies. First, we analyze the geographical distribution of research and study locations for the field of microbiome by extracting geo mentions from text. Using this analysis, we were able to draw useful insights on the state of research in microbiome w. r.t geographical distributions and economic drivers. Next, to understand the relationships between diseases, microbiome, and food which are central to the field, we construct semantic relationship networks between these different concepts central to the field of microbiome. We show how such networks can be useful to derive useful insight with no prior knowledge encoded.

7.
Sci Rep ; 11(1): 4232, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608574

RESUMO

Maoto, a traditional kampo medicine, has been clinically prescribed for influenza infection and is reported to relieve symptoms and tissue damage. In this study, we evaluated the effects of maoto as an herbal multi-compound medicine on host responses in a mouse model of influenza infection. On the fifth day of oral administration to mice intranasally infected with influenza virus [A/PR/8/34 (H1N1)], maoto significantly improved survival rate, decreased viral titer, and ameliorated the infection-induced phenotype as compared with control mice. Analysis of the lung and plasma transcriptome and lipid mediator metabolite profile showed that maoto altered the profile of lipid mediators derived from ω-6 and ω-3 fatty acids to restore a normal state, and significantly up-regulated the expression of macrophage- and T-cell-related genes. Collectively, these results suggest that maoto regulates the host's inflammatory response by altering the lipid mediator profile and thereby ameliorating the symptoms of influenza.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Mediadores da Inflamação/metabolismo , Vírus da Influenza A , Influenza Humana/tratamento farmacológico , Influenza Humana/etiologia , Influenza Humana/metabolismo , Preparações de Plantas/administração & dosagem , Transcriptoma/efeitos dos fármacos , Animais , Antivirais , Modelos Animais de Doenças , Ephedra sinica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/etiologia , Avaliação de Sintomas , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Viral/efeitos dos fármacos
8.
NPJ Syst Biol Appl ; 7(1): 6, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504811

RESUMO

Lipid mediators are major factors in multiple biological functions and are strongly associated with disease. Recent lipidomics approaches have made it possible to analyze multiple metabolites and the associations of individual lipid mediators. Such systematic approaches have enabled us to identify key changes of biological relevance. Against this background, a knowledge-based pathway map of lipid mediators would be useful to visualize and understand the overall interactions of these factors. Here, we have built a precise map of lipid mediator metabolic pathways (LimeMap) to visualize the comprehensive profiles of lipid mediators that change dynamically in various disorders. We constructed the map by focusing on ω-3 and ω-6 fatty acid metabolites and their respective metabolic pathways, with manual curation of referenced information from public databases and relevant studies. Ultimately, LimeMap comprises 282 factors (222 mediators, and 60 enzymes, receptors, and ion channels) and 279 reactions derived from 102 related studies. Users will be able to modify the map and visualize measured data specific to their purposes using CellDesigner and VANTED software. We expect that LimeMap will contribute to elucidating the comprehensive functional relationships and pathways of lipid mediators.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipidômica/métodos , Biologia de Sistemas/métodos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Humanos , Redes e Vias Metabólicas/fisiologia , Software
9.
Sci Rep ; 10(1): 10881, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616892

RESUMO

It is unclear how epidermal growth factor receptor EGFR major driver mutations (L858R or Ex19del) affect downstream molecular networks and pathways. This study aimed to provide information on the influences of these mutations. The study assessed 36 protein expression profiles of lung adenocarcinoma (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Weighted gene co-expression network analysis together with analysis of variance-based screening identified 13 co-expressed modules and their eigen proteins. Pathway enrichment analysis for the Ex19del mutation demonstrated involvement of SUMOylation, epithelial and mesenchymal transition, ERK/mitogen-activated protein kinase signalling via phosphorylation and Hippo signalling. Additionally, analysis for the L858R mutation identified various pathways related to cancer cell survival and death. With regard to the Ex19del mutation, ROCK, RPS6KA1, ARF1, IL2RA and several ErbB pathways were upregulated, whereas AURK and GSKIP were downregulated. With regard to the L858R mutation, RB1, TSC22D3 and DOCK1 were downregulated, whereas various networks, including VEGFA, were moderately upregulated. In all mutation types, CD80/CD86 (B7), MHC, CIITA and IFGN were activated, whereas CD37 and SAFB were inhibited. Costimulatory immune-checkpoint pathways by B7/CD28 were mainly activated, whereas those by PD-1/PD-L1 were inhibited. Our findings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.


Assuntos
Adenocarcinoma de Pulmão/genética , Regulação Neoplásica da Expressão Gênica , Genes erbB-1 , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Mutação Puntual , Adenocarcinoma de Pulmão/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Conjuntos de Dados como Assunto , Receptores ErbB/genética , Feminino , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Proteoma , Deleção de Sequência , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...