Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 38(12): 3563-3577, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31526250

RESUMO

Among the plant constituents of Clerodendrum colebrookianum Walp., acteoside, martinoside, and osmanthuside ß6 interact with ROCK, a drug target for cancer. In this study, aglycone fragments of these plant constituents (caffeic acid, ferulic acid, and p-coumaric acid) along with the homopiperazine ring of fasudil (standard ROCK inhibitor) were used to design hybrid molecules. The designed molecules interact with the key hinge region residue Met156/Met157 of ROCK I/II in a stable manner according to our docking and molecular dynamics simulations. These compounds were synthesized and tested in vitro in SW480, MDA-MB-231, and A-549 cancer cell lines. The most promising compound was chemically optimized to obtain a thiourea analog, 6a (IC50 = 25 µM), which has >3-fold higher antiproliferative activity than fasudil (IC50 = 87 µM) in SW480 cells. Treatment with this molecule also inhibits the migration of colon cancer cells and induces cell apoptosis. Further, SPR experiments suggests that the binding affinity of 6a with ROCK I protein is better than that of fasudil. Hence, the drug-like natural product analog 6a constitutes a highly promising new anticancer lead.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , Apoptose , Produtos Biológicos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...