Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 117058, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968797

RESUMO

The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38646682

RESUMO

Central nervous system disorders are prevalent, profoundly debilitating, and poorly managed. Developing innovative treatments for these conditions, including Alzheimer's disease, could significantly improve patients' quality of life and reduce the future economic burden on healthcare systems. However, groundbreaking drugs for central nervous system disorders have been scarce in recent years, highlighting the pressing need for advancements in this field. One significant challenge in the realm of nanotherapeutics is ensuring the precise delivery of drugs to their intended targets due to the complex nature of Alzheimer's disease. Although numerous therapeutic approaches for Alzheimer's have been explored, most drug candidates targeting amyloid-ß have failed in clinical trials. Recent research has revealed that tau pathology can occur independently of amyloid-ß and is closely correlated with the clinical progression of Alzheimer's symptoms. This discovery suggests that tau could be a promising therapeutic target. One viable approach to managing central nervous system disorders is the administration of nanoparticles to neurons, intending to inhibit tau aggregation by directly targeting p-tau. In Alzheimer's disease, beta-amyloid plaques and neurofibrillary tau tangles hinder neuron transmission and function. The disease also triggers persistent inflammation, compromises the blood-brain barrier, leads to brain shrinkage, and causes neuronal loss. While current medications primarily manage symptoms and slow cognitive decline, there is no cure for Alzheimer's.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38305404

RESUMO

BACKGROUND: v-RAF murine sarcoma viral homolog B1 (BRAF) is one of the most frequently mutated kinases in human cancers. BRAF exhibits three classes of mutations: Class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). METHOD: In this manuscript, the protein-ligand interaction site of all three mutants: BRAF monomer, BRAF homodimer BRAF2:14-3-32, and BRAF heterodimer BRAF:14-3-32:MEK (Mitogen extracellular Kinase) has been discussed. FDA-approved drugs still have limitations against all three classes of mutants, especially against the second and third classes. Using the DesPot grid model, 1114 new compounds were designed. Using virtual screening, the three PDB Ids 4XV2 for monomers, 7MFF for homodimers, and 4MNE for heterodimers were used for 1114 newly designed compounds. RESULT: Dabrafenib, encorafenib, sorafenib and vemurafenib were included as standard drugs. The top 10 hit molecules were identified for each protein. Additional binding studies were performed using molecular docking studies on the protein-ligand site of each PDB identifier. Absorption, distribution, metabolism, excretion (ADME) and toxicity studies were also performed. CONCLUSION: It was identified that top-hit molecules had better binding and interaction activity than standard in all three classes of mutants.

4.
Inflammopharmacology ; 32(1): 149-228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212535

RESUMO

Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-ß, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.


Assuntos
Terapias Complementares , Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/tratamento farmacológico , Cicatrização , Citocinas/metabolismo , Inflamação
5.
Horm Metab Res ; 55(11): 752-757, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798905

RESUMO

Chronic inflammation is a common factor in obesity, diabetes mellitus, and the complications of diabetes, including diabetic wounds. These ulcers are characterized by persistent lesions that are challenging to heal, significantly decreasing patients' quality of life and imposing a substantial financial burden on society. MMP are zinc endopeptidases that play a role in wound healing in response to various stimuli, including diabetes mellitus. MMP levels fluctuate throughout the wound healing process in diabetic patients' serum, skin tissues, and wound fluid, indicating their potential as biomarkers for diabetic foot ulcers. Targeting MMP has emerged as a promising strategy for treating diabetic wounds, as these enzymes are involved in critical biological processes related to wound healing, including extracellular matrix secretion, angiogenesis, granulation tissue formation, collagen growth, re-epithelization, inflammatory response, and oxidative stress.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Qualidade de Vida , Cicatrização/fisiologia , Pé Diabético/tratamento farmacológico , Matriz Extracelular , Metaloproteases/uso terapêutico
6.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259442

RESUMO

Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, ß-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.

7.
RSC Adv ; 12(46): 30181-30200, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36329938

RESUMO

The "RAS-RAF-MEK-ERK" pathway is an important signaling pathway in melanoma. BRAFV600E (70-90%) is the most common mutation in this pathway. BRAF inhibitors have four types of conformers: type I (αC-IN/DFG-IN), type II (αC-IN/DFG-OUT), type I1/2 (αC-OUT/DFG-IN), and type I/II (αC-OUT/DFG-OUT). First- and second-generation BRAF inhibitors show resistance to BRAFV600E and are ineffective against malignancies induced by dimer BRAF mutants causing 'paradoxical' activation. In the present study, we performed molecular modeling of pyrimidine-sulfonamide hybrids inhibitors using 3D-QSAR, molecular docking, and molecular dynamics simulations. Previous reports reveal the importance of pyrimidine and sulfonamide moieties in the development of BRAFV600E inhibitors. Analysis of 3D-QSAR models provided novel pyrimidine sulfonamide hybrid BRAFV600E inhibitors. The designed compounds share similarities with several structural moieties present in first- and second-generation BRAF inhibitors. A total library of 88 designed compounds was generated and molecular docking studies were performed with them. Four molecules (T109, T183, T160, and T126) were identified as hits and selected for detailed studies. Molecular dynamics simulations were performed at 900 ns and binding was calculated. Based on molecular docking and simulation studies, it was found that the designed compounds have better interactions with the core active site [the nucleotide (ADP or ATP) binding site, DFG motif, and the phospho-acceptor site (activation segment) of BRAFV600E protein than previous inhibitors. Similar to the FDA-approved BRAFV600E inhibitors the developed compounds have [αC-OUT/DFG-IN] conformation. Compounds T126, T160 and T183 interacted with DIF (Leu505), making them potentially useful against BRAFV600E resistance and malignancies induced by dimer BRAF mutants. The synthesis and biological evaluation of the designed molecules is in progress, which may lead to some potent BRAFV600E selective inhibitors.

8.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36145292

RESUMO

Cancer is a complex disease, and its treatment is a big challenge, with variable efficacy of conventional anticancer drugs. A two-drug cocktail hybrid approach is a potential strategy in recent drug discovery that involves the combination of two drug pharmacophores into a single molecule. The hybrid molecule acts through distinct modes of action on several targets at a given time with more efficacy and less susceptibility to resistance. Thus, there is a huge scope for using hybrid compounds to tackle the present difficulties in cancer medicine. Recent work has applied this technique to uncover some interesting molecules with substantial anticancer properties. In this study, we report data on numerous promising hybrid anti-proliferative/anti-tumor agents developed over the previous 10 years (2011-2021). It includes quinazoline, indole, carbazole, pyrimidine, quinoline, quinone, imidazole, selenium, platinum, hydroxamic acid, ferrocene, curcumin, triazole, benzimidazole, isatin, pyrrolo benzodiazepine (PBD), chalcone, coumarin, nitrogen mustard, pyrazole, and pyridine-based anticancer hybrids produced via molecular hybridization techniques. Overall, this review offers a clear indication of the potential benefits of merging pharmacophoric subunits from multiple different known chemical prototypes to produce more potent and precise hybrid compounds. This provides valuable knowledge for researchers working on complex diseases such as cancer.

9.
Chem Biodivers ; 19(9): e202200200, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35950335

RESUMO

Diabetes mellitus is a typical life threatening of disease, which generate due to the dysfunction of ß cells of pancreas. In 2014, WHO stated that 422 million people were infected with DM. The current pattern of management of diabetes included synthetic or plant based oral hypoglycemic drugs and insulin but drug resentence is become a very big issues in antidiabetic therapy. Thus, it's very earnest to discover now medication for this disease. Now the days, it is well acknowledged that diabetic patients are more prone towards covid and related complications. Thus, medical practitioners reformed the methodology of prescribing medication for covid infected antidiabetic therapy and encouraging the medication contains dual pharmacological properties. It is also well know that polyphenols specifically hold a significant role in oxidative stress and reduced the severity of many inflammatory diseases. Cucumis melo has rich history as ethano-pharmacological use in Indian subcontinent. The fruit and seed are well-known for the treatment of various diseases due to the presence of phenolics. Therefore, in this study, the combined mixture of flower and seeds were used for the extraction of polyphenolic rich extract and tested for antidiabetic activity through the antioxidant and in vivo experiments. The antioxidant potential measurement exhibited that the selected plant extract has the significant competence to down-regulate oxidative stress (DPPH scavenging IC50 at 60.7±1.05 µg/mL, ABTS IC50 at 62.15±0.50 µg/mL). Furthermore, the major polyphenolic phyto-compounds derived from the Cucumis melo were used for in silico anticovid activity, docking, and complementarity studies. The anticovid activity prognosis reflected that selected phyto-compounds amentoflavone and vanillic acid have optimal possibility to interact with 3C-like protease and through this moderate anticovid activity can be exhibit. The docking experiments established that the selected compounds have propensity to interact with protein tyrosine phosphatase 1B, 11ß-Hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, and catalase ß-glucuronidase receptor. In vivo experiments showed that 500 mg/kg, Cucumis melo extract ominously amplified body weight, plasma insulin, high-density lipoprotein levels, and biochemical markers. Furthermore, extract significantly downregulate the blood glucose, total cholesterol, triglycerides, low-density lipoprotein, and very low-density lipoprotein.


Assuntos
COVID-19 , Cucumis melo , Diabetes Mellitus Experimental , Momordica , 11-beta-Hidroxiesteroide Desidrogenases , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Biomarcadores , Glicemia , Catalase/metabolismo , Colesterol , Cucumis melo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucuronidase , Glutationa Peroxidase/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina , Lipoproteínas HDL/uso terapêutico , Lipoproteínas LDL/uso terapêutico , Momordica/metabolismo , Peptídeo Hidrolases , Extratos Vegetais/química , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Superóxido Dismutase/metabolismo , Triglicerídeos , Ácido Vanílico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...