Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(26): 24093-24105, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426250

RESUMO

This study employs advanced solid-state NMR techniques to investigate the atomic-level structure and dynamics of two enantiomers: ofloxacin and levofloxacin. The investigation focuses on critical attributes, such as the principal components of the chemical shift anisotropy (CSA) tensor, the spatial proximity of 1H and 13C nuclei, and site-specific 13C spin-lattice relaxation time, to reveal the local electronic environment surrounding specific nuclei. Levofloxacin, the levo-isomer of ofloxacin, exhibits higher antibiotic efficacy than its counterpart, and the dissimilarities in the CSA parameters indicate significant differences in the local electronic configuration and nuclear spin dynamics between the two enantiomers. Additionally, the study employs the 1H-13C frequency-switched Lee-Goldburg heteronuclear correlation (FSLGHETCOR) experiment to identify the presence of heteronuclear correlations between specific nuclei (C15 and H7 nuclei and C13 and H12 nuclei) in ofloxacin but not in levofloxacin. These observations offer insights into the link between bioavailability and nuclear spin dynamics, underscoring the significance of NMR crystallography approaches in advanced drug design.

2.
ACS Omega ; 7(47): 43190-43209, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467925

RESUMO

The basic configuration of glucocorticoid consists of four-fused rings associated with one cyclohexadienone ring, two cyclohexane rings, and one cyclopentane ring. The ways the structure and dynamics of five glucocorticoids (prednisone, prednisolone, prednisolone acetate, methylprednisolone, and methylprednisolone acetate) are altered because of the substitution of various functional groups with these four-fused rings are studied thoroughly by applying sophisticated solid-state nuclear magnetic resonance (NMR) methodologies. The biological activities of these glucocorticoids are also changed because of the attachment of various functional groups with these four-fused rings. The substitution of the hydroxyl group (with the C11 atom of the cyclohexane ring) in place of the keto group enhances the potential of the glucocorticoid to cross the cellular membrane. As a result, the bioavailability of prednisolone (the hydroxyl group is attached with the C11 atom of the cyclohexane ring) is increased compared to prednisone (the keto group is attached with the C11 atom of cyclohexane rings). Another notable point is that the spin-lattice relaxation rate at crystallographically distinct carbon nuclei sites of prednisolone is increased compared to that of the prednisone, which implies that the motional degrees of freedom of glucocorticoid is increased because of the substitution of the hydroxyl group in place of the keto group of the cyclohexane ring. The attachment of the methyl group with the C6 atom of cyclohexane rings further reduces the spin-lattice relaxation time at crystallographically distinct carbon nuclei sites of glucocorticoid and its bioactivity is also increased. By comparing the spin-lattice relaxation time and the local correlation time at crystallographically different carbon nuclei sites of three steroids prednisone, prednisolone, and methylprednisolone, it is observed that both the spin-lattice relaxation time and the local correlation time gradually decrease at each crystallographically distinct carbon nuclei sites when we move from prednisone to prednisolone to methyl-prednisolone. On the other hand, if we compare the same for prednisolone, prednisolone acetate, and methylprednisolone acetate, then we also observe that both the spin-lattice relaxation time and the local-correlation time gradually decrease from prednisolone to prednisolone acetate to methylprednisolone acetate for all chemically different carbon nuclei. It is also noticeable that both the spin-lattice relaxation time and the local-correlation time gradually decrease from prednisone to prednisolone to prednisolone acetate to methylprednisolone to methylprednisolone acetate for most of the carbon nuclei sites. From in silico analysis, it is also revealed that the bioavailability and efficacy of the glucocorticoid increase from prednisone to prednisolone to prednisolone acetate to methylprednisolone to methylprednisolone acetate. Hence, it can be concluded that the biological activity and the motional degrees of freedom of the glucocorticoids are highly correlated. These types of studies provide a clear picture of the structure-activity relationship of the drug molecules, which will enlighten the path of developing highly potent glucocorticoids with minimum side effects. Another important aspect of these types of studies is to provide information about the electronics configuration and nuclear spin dynamics at crystallographically different carbon nuclei sites of five glucocorticoids, which will enrich the field of "NMR crystallography".

3.
J Anaesthesiol Clin Pharmacol ; 29(2): 191-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23878440

RESUMO

BACKGROUND: Various anatomical measurements and non-invasive clinical tests, singly or in various combinations can be performed to predict difficult intubation. Recently introduced "Upper lip bite test" (ULBT) and "Ratio of height to Thyromental distance" (RHTMD) are claimed to have high predictability. We conducted a study to compare the Predictive Value of ULBT and RHTMD with Mouth opening (Inter-Incisor gap) (IIG), Modified Mallampatti Test (MMT), Head and neck movement (HNM) and Thyromental Distance (TMD) for Difficult Laryngoscopy. MATERIALS AND METHODS: In this prospective, single blinded observational study, 480 adult patients of either sex, ASA grade I and II were assessed and graded for ULBT, RHTMD, TMD, MMT, IIG, and HNM according to standard methods and correlated with the Cormack and Lehane grade. RESULTS: ULBT and RHTMD had highest sensitivity, specificity, positive predictive value, negative predictive value, likelihood ratio, i.e., 74.63%, 91.53%, 58.82%, 95.7%, 31.765 and 71.64%, 92.01%, 59.26%, 95.24%, 8.96 respectively, compared to TMD, MMT, IIG and HNM. CONCLUSIONS: ULBT is the best predictive test for difficult laryngoscopy in apparently normal patients but RHTMD can also be used as an acceptable alternative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...