Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(3): 837-850, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38291973

RESUMO

The Martini coarse-grain force-field has emerged as an important framework to probe cellular processes at experimentally relevant time- and length-scales. However, the recently developed version, the Martini3 force-field with the implemented Go̅ model (Martini3Go̅), as well as previous variants of the Martini model have not been benchmarked and rigorously tested for globular proteins. In this study, we consider three globular proteins, ubiquitin, lysozyme, and cofilin, and compare protein dynamics and hydration with observables from experiments and all-atom simulations. We show that the Martini3Go̅ model is able to accurately model the structural and dynamic features of small globular proteins. Overall, the structural integrity of the proteins is maintained, as validated by contact maps, radii of gyration (Rg), and SAXS profiles. The chemical shifts predicted from the ensemble sampled in the simulations are consistent with the experimental data. Further, a good match is observed in the protein-water interaction energetics, and the hydration levels of the residues are similar to atomistic simulations. However, the protein-water interaction dynamics is not accurately represented and appears to depend on the protein structural complexity, residue specificity, and water dynamics. Our work is a step toward testing and assessing the Martini3Go̅ model and provides insights into future efforts to refine Martini models with improved solvation effects and better correspondence to the underlying all-atom systems.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...