Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Med Virol ; 34(4): e2568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937111

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in December 2019 and rapidly became a pandemic as coronavirus disease 2019 (COVID-19). Apart from other organs, presence of specific receptor angiotensin-converting enzyme (ACE2) and corresponding proteases such as transmembrane serine protease 2, basigin and cysteine protease cathepsin L make follicular somatic cells as well as oocyte as potential targets for SARS-CoV-2 infection. The SARS-CoV-2 causes inflammation and hypoxia that generate reactive oxygen species (ROS) in critically ill patients. In addition, a large number of casualties and insecurity of life due to repeated waves of SARS-CoV-2 infection generate psychological stress and cortisol resulting in the further generation of ROS. The excess levels of ROS under physiological range cause meiotic instability, while high levels result in oxidative stress that trigger various death pathways and affect number as well as quality of follicular oocytes. Although, emerging evidence suggests that the SARS-CoV-2 utilises cellular machinery of ovarian follicular cells, generates ROS and impairs quality of follicular oocytes, the underlying mechanism of viral entry into host cell and its negative impact on the follicular oocyte remains poorly understood. Therefore, this review summarises emerging evidence on the presence of cellular machinery for SARS-CoV-2 in ovarian follicles and the potential negative impact of viral infection on the follicular oocytes that affect ovarian functions in critically ill and stressed women.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Oócitos , SARS-CoV-2 , Humanos , COVID-19/virologia , SARS-CoV-2/fisiologia , Feminino , Oócitos/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Internalização do Vírus , Catepsina L/metabolismo , Basigina/metabolismo , Folículo Ovariano/virologia , Folículo Ovariano/metabolismo , Estresse Oxidativo , Serina Endopeptidases/metabolismo
2.
Cell Signal ; 117: 111103, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38367792

RESUMO

The in vitro fertilization (IVF) is the first choice of infertile couples worldwide to plan for conception. Besides having a significant advancement in IVF procedure, the success rate is still poor. Although several approaches have been tested to improve IVF protocol, minor changes in culture conditions, physical factors and/or drug treatment generate reactive oxygen species (ROS) in oocytes. Due to large size and huge number of mitochondria, oocyte is more susceptible towards ROS-mediated signalling under in vitro culture conditions. Elevation of ROS levels destabilize maturation promoting factor (MPF) that results in meiotic exit from diplotene as well as metaphase-II (M-II) arrest in vitro. Once meiotic exit occurs, these oocytes get further arrested at metaphase-I (M-I) stage or metaphase-III (M-III)-like stage under in vitro culture conditions. The M-I as well as M-III arrested oocytes are not fit for fertilization and limits IVF outcome. Further, the generation of excess levels of ROS cause oxidative stress (OS) that initiate downstream signalling to initiate various death pathways such as apoptosis, autophagy, necroptosis and deteriorates oocyte quality under in vitro culture conditions. The increase of cellular enzymatic antioxidants and/or supplementation of exogenous antioxidants in culture medium protect ROS-induced deterioration of oocyte quality in vitro. Although a growing body of evidence suggests the ROS and OS-mediated deterioration of oocyte quality in vitro, their downstream signalling and related mechanisms remain poorly understood. Hence, this review article summarizes the existing evidences concerning ROS and OS-mediated downstream signalling during deterioration of oocyte quality in vitro. The use of various antioxidants against ROS and OS-mediated impairment of oocyte quality in vitro has also been explored in order to increase the success rate of IVF during assisted reproductive health management.


Assuntos
Antioxidantes , Oócitos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Mamíferos/metabolismo
3.
J Phys Condens Matter ; 35(49)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37586379

RESUMO

Out-of-equilibrium investigation of strongly correlated materials deciphers the hidden equilibrium properties. Herein, we have investigated the out-of-equilibrium magnetic properties of polycrystalline Dy2Ti2O7and Ho2Ti2O7spin ices. Our experimental findings reveal the emergence of magnetic field-induced anomalous hysteresis observed solely in temperature-and magnetic field-dependent AC susceptibility measurements. The observed memory effect (anomalous thermomagnetic hysteresis) exhibits a strong dependence on both thermal and non-thermal driving variables. Owing to the non-collinear spin structure, the applied DC bias magnetic field produces quenched disorder sites in the cooperative Ising spin matrix and suppresses the spin-phonon coupling. These quench disorders create a dynamic spin correlation, having slow spin relaxation and quick decay time, which additionally contribute to AC susceptibility. The initial conditions and measurement protocol decide the magnitude and sign of this dynamical term contributing to AC susceptibility. It is being suggested that such out-of-equilibrium properties arise from the combined influences of geometric frustration, disorder, and the cooperative nature of spin dynamics exhibited by these materials.

4.
Biochem Biophys Rep ; 32: 101350, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36164562

RESUMO

Lung cancer is one of the most frequently diagnosed malignant tumors and the leading cause of cancer-related death worldwide. Mainly, Non-small-cell lung cancer (NSCLC), which accounts for more than eighty-five percent of all lung cancers, consists of two major subtypes: lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Novel coronavirus disease (COVID-19) affected millions of people caused by acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) around the globe. Lung cancer patients and COVID-19 present unique and unfortunate lethal combinations because the lungs are the primary target organ of SARS-CoV-2 infection. Clinical studies have demonstrated that an over-activated inflammatory response associated with severe COVID-19 cases is characterized by excessive auto-amplifying cytokine release, which is defined as a "cytokine storm." ACE2 and TMPRSS2 receptors play an essential role in SARS-CoV-2 infection; therefore, using in silico analysis, we did correlation analysis with immune infiltration markers in LUAD and LUSC patient groups. Our study identified a promising correlation between immune-modulators and receptor proteins (ACE-2 and TMPRSS2), creating a domain that requires further laboratory studies for clinical authentication.

5.
Proc Biol Sci ; 289(1973): 20212650, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35473372

RESUMO

The collection of caterpillar fungus accounts for 50-70% of the household income of thousands of Himalayan communities and has an estimated market value of $5-11 billion across Asia. However, Himalayan collectors are at multiple economic disadvantages compared with collectors on the Tibetan Plateau because their product is not legally recognized. Using a customized hybrid-enrichment probe set and market-grade caterpillar fungus (with samples up to 30 years old) from 94 production zones across Asia, we uncovered clear geography-based signatures of historical dispersal and significant isolation-by-distance among caterpillar fungus hosts. This high-throughput approach can readily distinguish samples from major production zones with definitive geographical resolution, especially for samples from the Himalayan region that form monophyletic clades in our analysis. Based on these results, we propose a two-step procedure to help local communities authenticate their produce and improve this multi-national trade-route without creating opportunities for illegal exports and other forms of economic exploitation. We argue that policymakers and conservation practitioners must encourage the fair trade of caterpillar fungus in addition to sustainable harvesting to support a trans-boundary conservation effort that is much needed for this natural commodity in the Himalayan region.


Assuntos
Fungos , Ásia , Geografia
6.
Stem Cell Rev Rep ; 17(3): 777-784, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33140233

RESUMO

Maintenance of metaphase-II (M-II) arrest in ovum is required to present itself as a right gamete for successful fertilization in mammals. Surprisingly, instability of meiotic cell cycle results in spontaneous exit from M-II arrest, chromosomal scattering and incomplete extrusion of second polar body (PB-II) without forming pronuclei so called abortive spontaneous ovum activation (SOA). It remains unclear what causes meiotic instability in freshly ovulated ovum that results in abortive SOA. We propose the involvement of various signal molecules such as reactive oxygen species (ROS), cyclic 3',5' adenosine monophosphate (cAMP) and calcium (Ca2+) in the induction of meiotic instability and thereby abortive SOA. These signal molecules through their downstream pathways modulate phosphorylation status and activity of cyclin dependent kinase (cdk1) as well as cyclin B1 level. Changes in phosphorylation status of cdk1 and its activity, dissociation and degradation of cyclin B1 destabilize maturation promoting factor (MPF). The premature MPF destabilization and defects in other cell cycle regulators possibly cause meiotic instability in ovum soon after ovulation. The meiotic instability results in a pathological condition of abortive SOA and deteriorates ovum quality. These ova are unfit for fertilization and limit reproductive outcome in several mammalian species including human. Therefore, global attention is required to identify the underlying causes in greater details in order to address the problem of meiotic instability in ova of several mammalian species icluding human. Moreover, these activated ova may be used to create parthenogenetic embryonic stem cell lines in vitro for the use in regenerative medicine.Graphical abstract.


Assuntos
Fator Promotor de Maturação , Oócitos , Animais , Cálcio/metabolismo , Feminino , Humanos , Mamíferos/metabolismo , Fator Promotor de Maturação/metabolismo , Fosforilação
7.
Cell ; 183(7): 1884-1900.e23, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33301709

RESUMO

Eastern equine encephalitis virus (EEEV) is one of the most virulent viruses endemic to North America. No licensed vaccines or antiviral therapeutics are available to combat this infection, which has recently shown an increase in human cases. Here, we characterize human monoclonal antibodies (mAbs) isolated from a survivor of natural EEEV infection with potent (<20 pM) inhibitory activity of EEEV. Cryo-electron microscopy reconstructions of two highly neutralizing mAbs, EEEV-33 and EEEV-143, were solved in complex with chimeric Sindbis/EEEV virions to 7.2 Å and 8.3 Å, respectively. The mAbs recognize two distinct antigenic sites that are critical for inhibiting viral entry into cells. EEEV-33 and EEEV-143 protect against disease following stringent lethal aerosol challenge of mice with highly pathogenic EEEV. These studies provide insight into the molecular basis for the neutralizing human antibody response against EEEV and can facilitate development of vaccines and candidate antibody therapeutics.


Assuntos
Aerossóis/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Encefalite Equina do Leste/imunologia , Encefalomielite Equina/imunologia , Encefalomielite Equina/prevenção & controle , Adulto , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Microscopia Crioeletrônica , Modelos Animais de Doenças , Vírus da Encefalite Equina do Leste/ultraestrutura , Encefalomielite Equina/virologia , Epitopos/química , Feminino , Glicoproteínas/imunologia , Humanos , Camundongos , Modelos Moleculares , Mutagênese/genética , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/imunologia , Sindbis virus/imunologia , Vírion/imunologia , Vírion/ultraestrutura , Internalização do Vírus
8.
Eur J Pharmacol ; 883: 173293, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663542

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) are group of enzymes responsible for the hydrolysis of cyclic adenosine 3', 5' monophosphate (cAMP) and cyclic guanosine 3', 5' monophosphate (cGMP) levels in wide variety of cell types. These PDEs are detected in encircling granulosa cells or in oocyte with in follicular microenvironment and responsible for the decrease of cAMP and cGMP levels in mammalian oocytes. A transient decrease of cAMP level initiates downstream pathways to cause spontaneous meiotic resumption from diplotene arrest and induces oocyte maturation. The nonspecific PDE inhibitors (caffeine, pentoxifylline, theophylline, IBMX etc.) as well as specific PDE inhibitors (cilostamide, milrinone, org 9935, cilostazol etc.) have been used to elevate cAMP level and inhibit meiotic resumption from diplotene arrest and oocyte maturation, ovulation, fertilization and pregnancy rates both in vivo as well as under in vitro culture conditions. The PDEs inhibitors are used as powerful experimental tools to demonstrate cyclic nucleotide mediated changes in ovarian functions and thereby fertility. Indeed, non-hormonal nature and reversible effects of nonspecific as well as specific PDE inhibitors hold promise for the development of novel therapeutic drugs for female fertility regulation.


Assuntos
Fármacos para a Fertilidade Feminina/uso terapêutico , Fertilidade/efeitos dos fármacos , Infertilidade Feminina/tratamento farmacológico , Oócitos/efeitos dos fármacos , Ovário/efeitos dos fármacos , Inibidores de Fosfodiesterase/uso terapêutico , Animais , Feminino , Humanos , Infertilidade Feminina/enzimologia , Infertilidade Feminina/fisiopatologia , Oócitos/enzimologia , Ovário/enzimologia , Ovário/fisiopatologia , Ovulação/efeitos dos fármacos , Gravidez
9.
Cell Chem Biol ; 26(11): 1515-1525.e4, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31591036

RESUMO

Mitochondrial sulfide quinone oxidoreductase (SQR) catalyzes the oxidation of H2S to glutathione persulfide with concomitant reduction of CoQ10. We report herein that the promiscuous activity of human SQR supported the conversion of CoA to CoA-SSH (CoA-persulfide), a potent inhibitor of butyryl-CoA dehydrogenase, and revealed a molecular link between sulfide and butyrate metabolism, which are known to interact. Three different CoQ1-bound crystal structures furnished insights into how diverse substrates access human SQR, and provided snapshots of the reaction coordinate. Unexpectedly, the active site cysteines in SQR are configured in a bridging trisulfide at the start and end of the catalytic cycle, and the presence of sulfane sulfur was confirmed biochemically. Importantly, our study leads to a mechanistic proposal for human SQR in which sulfide addition to the trisulfide cofactor eliminates 201Cys-SSH, forming an intense charge-transfer complex with flavin adenine dinucleotide, and 379Cys-SSH, which transfers sulfur to an external acceptor.


Assuntos
Butiratos/química , Coenzima A/metabolismo , Quinona Redutases/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Dissulfetos/química , Glutationa/análogos & derivados , Glutationa/química , Humanos , Sulfeto de Hidrogênio/química , Cinética , Mitocôndrias/enzimologia , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Quinona Redutases/química , Especificidade por Substrato , Sulfetos/química , Sulfetos/metabolismo
10.
J Biol Chem ; 294(28): 11011-11022, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31160338

RESUMO

Hydrogen sulfide (H2S) is a gaseous signaling molecule, which modulates a wide range of mammalian physiological processes. Cystathionine γ-lyase (CSE) catalyzes H2S synthesis and is a potential target for modulating H2S levels under pathophysiological conditions. CSE is inhibited by propargylglycine (PPG), a widely used mechanism-based inhibitor. In this study, we report that inhibition of H2S synthesis from cysteine, but not the canonical cystathionine cleavage reaction catalyzed by CSE in vitro, is sensitive to preincubation of the enzyme with PPG. In contrast, the efficacy of S-3-carboxpropyl-l-cysteine (CPC) a new inhibitor described herein, was not dependent on the order of substrate/inhibitor addition. We observed that CPC inhibited the γ-elimination reaction of cystathionine and H2S synthesis from cysteine by human CSE with Ki values of 50 ± 3 and 180 ± 15 µm, respectively. We noted that CPC spared the other enzymes involved either directly (cystathionine ß-synthase and mercaptopyruvate sulfurtransferase) or indirectly (cysteine aminotransferase) in H2S biogenesis. CPC also targeted CSE in cultured cells, inhibiting transsulfuration flux by 80-90%, as monitored by the transfer of radiolabel from [35S]methionine to GSH. The 2.5 Å resolution crystal structure of human CSE in complex with the CPC-derived aminoacrylate intermediate provided a structural framework for the molecular basis of its inhibitory effect. In summary, our study reveals a previously unknown confounding effect of PPG, widely used to inhibit CSE-dependent H2S synthesis, and reports on an alternative inhibitor, CPC, which could be used as a scaffold to develop more potent H2S biogenesis inhibitors.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Alcinos/metabolismo , Animais , Linhagem Celular , Cistationina gama-Liase/fisiologia , Cisteína/farmacologia , Glicina/análogos & derivados , Glicina/metabolismo , Humanos , Sulfeto de Hidrogênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfetos/farmacologia
11.
Cell Mol Life Sci ; 76(17): 3311-3322, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31062072

RESUMO

Oxygen deprivation affects human health by modulating system as well as cellular physiology. Hypoxia generates reactive oxygen species (ROS), causes oxidative stress and affects female reproductive health by altering ovarian as well as oocyte physiology in mammals. Hypoxic conditions lead to several degenerative changes by inducing various cell death pathways like autophagy, apoptosis and necrosis in the follicle of mammalian ovary. The encircling somatic cell death interrupts supply of nutrients to the oocyte and nutrient deprivation may result in the generation of ROS. Increased level of ROS could induce granulosa cells as well as oocyte autophagy. Although autophagy removes damaged proteins and subcellular organelles to maintain the cell survival, irreparable damages could induce cell death within intra-follicular microenvironment. Hypoxia-induced autophagy is operated through 5' AMP activated protein kinase-mammalian target of rapamycin, endoplasmic reticulum stress/unfolded protein response and protein kinase C delta-c-junN terminal kinase 1 pathways in a wide variety of somatic cell types. Similar to somatic cells, we propose that hypoxia may induce granulosa cell as well as oocyte autophagy and it could be responsible at least in part for germ cell elimination from mammalian ovary. Hypoxia-mediated germ cell depletion may cause several reproductive impairments including early menopause in mammals.


Assuntos
Autofagia , Células da Granulosa/citologia , Animais , Proteína Beclina-1/metabolismo , Hipóxia Celular , Feminino , Células da Granulosa/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Cell Chem Biol ; 26(7): 960-969.e4, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31056463

RESUMO

Allosteric regulation of methylmalonyl-CoA mutase (MCM) by the G-protein chaperone CblA is transduced via three "switch" elements that gate the movement of the B12 cofactor to and from MCM. Mutations in CblA and MCM cause hereditary methylmalonic aciduria. Unlike the bacterial orthologs used previously to model disease-causing mutations, human MCM and CblA exhibit a complex pattern of regulation that involves interconverting oligomers, which are differentially sensitive to the presence of GTP versus GDP. Patient mutations in the switch III region of CblA perturb the nucleotide-sensitive distribution of the oligomeric complexes with MCM, leading to loss of regulated movement of B12 to and/or from MCM and explain the molecular mechanism of the resulting disease.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Metilmalonil-CoA Mutase/metabolismo , Regulação Alostérica/fisiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Fibroblastos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Chaperonas Moleculares , Mutação , Transporte Proteico , Vitamina B 12
13.
J Biomed Sci ; 26(1): 11, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665407

RESUMO

Stress is deeply rooted in the modern society due to limited resources and large competition to achieve the desired goal. Women are more frequently exposed to several stressors during their reproductive age that trigger generation of reactive oxygen species (ROS). Accumulation of ROS in the body causes oxidative stress (OS) and adversely affects ovarian functions. The increased OS triggers various cell death pathways in the ovary. Beside apoptosis and autophagy, OS trigger necroptosis in granulosa cell as well as in follicular oocyte. The OS could activate receptor interacting protein kinase-1(RIPK1), receptor interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) to trigger necroptosis in mammalian ovary. The granulosa cell necroptosis may deprive follicular oocyte from nutrients, growth factors and survival factors. Under these conditions, oocyte becomes more susceptible towards OS-mediated necroptosis in the follicular oocytes. Induction of necroptosis in encircling granulosa cell and oocyte may lead to follicular atresia. Indeed, follicular atresia is one of the major events responsible for the elimination of majority of germ cells from cohort of ovary. Thus, the inhibition of necroptosis could prevent precautious germ cell depletion from ovary that may cause reproductive senescence and early menopause in several mammalian species including human.


Assuntos
Apoptose/fisiologia , Necrose/fisiopatologia , Ovário/fisiopatologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/efeitos adversos , Estresse Fisiológico , Animais , Feminino , Humanos
14.
J Cell Physiol ; 234(6): 8019-8027, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341907

RESUMO

The maximum number of germ cells is present during the fetal life in mammals. Follicular atresia results in rapid depletion of germ cells from the cohort of the ovary. At the time of puberty, only a few hundred (<1%) germ cells are either culminated into oocytes or further get eliminated during the reproductive life. Although apoptosis plays a major role, necrosis as well as necroptosis, might also be involved in germ cell elimination from the mammalian ovary. Both necrosis and necroptosis show similar morphological features and are characterized by an increase in cell volume, cell membrane permeabilization, and rupture that lead to cellular demise. Necroptosis is initiated by tumor necrosis factor and operated through receptor interacting protein kinase as well as mixed lineage kinase domain-like protein. The acetylcholinesterase, cytokines, starvation, and oxidative stress play important roles in necroptosis-mediated granulosa cell death. The granulosa cell necroptosis directly or indirectly induces susceptibility toward necroptotic or apoptotic cell death in oocytes. Indeed, prevention of necrosis and necroptosis pathways using their specific inhibitors could enhance growth/differentiation factor-9 expression, improve survivability as well as the meiotic competency of oocytes, and prevent decline of reproductive potential in several mammalian species and early onset of menopause in women. This study updates the information and focuses on the possible involvement of necrosis and necroptosis in germ cell depletion from the mammalian ovary.


Assuntos
Necroptose/genética , Necrose/genética , Oócitos/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Animais , Apoptose/genética , Feminino , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Células da Granulosa/metabolismo , Humanos , Mamíferos , Oócitos/metabolismo , Ovário/metabolismo , Estresse Oxidativo/genética
15.
Infect Genet Evol ; 67: 101-111, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396000

RESUMO

Ornithine decarboxylase (ODC) is an immediate precursor of polyamine biosynthesis in Serratia marcescens and a potential target for inhibition of its growth. We predicted the 3D structural conformation of ODC enzyme and validated it using MDS in our previous study. In this current study, the potential inhibitors of ODC were obtained by virtual screening of potential inhibitors from ZINC database and studied in depth for their different binding pose. Among the ten virtually screened inhibitors, Conessine exhibited the best binding with ODC and its inhibition property was studied further by MDS studies. The natural compound conessine is isolated from plant Holarrhena antidysenterica and it is studied against ODC of Serratia marcenses for its inhibitory potentials. This revealed unforeseen twisted position in root mean square fluctuation (RMSF) and ODC modelled conformation that influenced ligand binding. Both predicted model and ligand bound model were compared and found to be stable with Root Mean Square Deviation (RMSD) of approximately 7 nm and 0.25 nm to that of crystallographic structure over simulation time of 55 ns and 70 ns respectively. This work paves the way for future development of new drugs against nosocomial diseases caused by Serratia marcescens.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Simulação de Dinâmica Molecular , Serratia marcescens/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Sítios de Ligação , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Relação Quantitativa Estrutura-Atividade
16.
ACS Chem Biol ; 13(8): 2300-2307, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29966080

RESUMO

Hydrogen sulfide (H2S) is an endogenously produced gas that is toxic at high concentrations. It is eliminated by a dedicated mitochondrial sulfide oxidation pathway, which connects to the electron transfer chain at the level of complex III. Direct reduction of cytochrome c (Cyt C) by H2S has been reported previously but not characterized. In this study, we demonstrate that reduction of ferric Cyt C by H2S exhibits hysteretic behavior, which suggests the involvement of reactive sulfur species in the reduction process and is consistent with a reaction stoichiometry of 1.5 mol of Cyt C reduced/mol of H2S oxidized. H2S increases O2 consumption by human cells (HT29 and HepG2) treated with the complex III inhibitor antimycin A, which is consistent with the entry of sulfide-derived electrons at the level of complex IV. Cyt C-dependent H2S oxidation stimulated protein persulfidation in vitro, while silencing of Cyt C expression decreased mitochondrial protein persulfidation in a cell culture. Cyt C released during apoptosis was correlated with persulfidation of procaspase 9 and with loss of its activity. These results reveal a potential role for the electron transfer chain in general, and Cyt C in particular, for potentiating sulfide-based signaling.


Assuntos
Citocromos c/metabolismo , Sulfeto de Hidrogênio/metabolismo , Transdução de Sinais , Apoptose , Células HT29 , Células Hep G2 , Humanos , Mitocôndrias/metabolismo , Oxirredução , Oxigênio/metabolismo
17.
Growth Factors ; 36(1-2): 41-47, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29842809

RESUMO

In mammals, preovulatory oocytes are encircled by several layers of granulosa cells (GCs) in follicular microenvironment. These follicular oocytes are arrested at diplotene arrest due to high level of cyclic nucleotides from encircling GCs. Pituitary gonadotropin acts at the level of encircling GCs and increases adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) and activates mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. The MAPK3/1 disrupts the gap junctions between encircling GCs and oocyte. The disruption of gap junctions interrupts the transfer of cyclic nucleotides to the oocyte that results a drop in intraoocyte cAMP level. A transient decrease in oocyte cAMP level triggers maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggers meiotic resumption from diplotene arrest in follicular oocyte. Thus, MAPK3/1 from GCs origin plays important role in gonadotropin-mediated meiotic resumption from diplotene arrest in follicular oocyte of mammals.


Assuntos
Células da Granulosa/enzimologia , Meiose/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oócitos/fisiologia , Animais , Feminino , Gonadotropinas Hipofisárias/fisiologia , Nucleotídeos Cíclicos/metabolismo
18.
Biomed Pharmacother ; 103: 46-49, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29635127

RESUMO

Stress is deeply rooted in the society and women are frequently exposed to psychological, physical and physiological stressors. Psychological stress disturbs reproductive health by inducing generation of reactive oxygen species (ROS) and thereby oxidative stress (OS). The increased OS may affect physiology of ovary, oocyte quality and cause female reproductive health disorders. To overcome stress-mediated reproductive health disorders in women, shatavari (Asparagus racemosus) is frequently recommended in Ayurvedic system of medicine. Although shatavari is one of the major health tonics and most popular rasayana drugs to treat reproductive ailments of women, underlying mechanism of shatavari action at the level of ovary remains poorly understood. Based on the existing studies, we propose that shatavari may improve female reproductive health complications including hormonal imbalance, polycystic ovarian syndrome (PCOS), follicular growth and development, oocyte quality and infertility possibly by reducing OS level and increasing antioxidants level in the body. Further studies are required to elucidate the mechanism of shatavari actions at the level of ovary and oocyte that directly impacts the reproductive health of women.


Assuntos
Asparagus/química , Doenças dos Genitais Femininos/etiologia , Saúde Reprodutiva , Estresse Psicológico/complicações , Feminino , Hormônios/metabolismo , Humanos , Infertilidade Feminina/etiologia
19.
J Biomed Sci ; 25(1): 36, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29681242

RESUMO

Mammalian ovary contains millions of germ cells during embryonic life but only few of them are culminated into oocytes that achieve meiotic competency just prior to ovulation. The majority of germ cells are depleted from ovary through several pathways. Follicular atresia is one of the major events that eliminate germ cells from ovary by engaging apoptotic as well as non-apoptotic pathways of programmed cell death. Apoptosis is characterized by several morphological changes that include cell shrinkage, nuclear condensation, membrane blebbing and cytoplasmic fragmentation by both mitochondria- as well as death receptor-mediated pathways in encircling granulosa cells and oocyte. Although necroapoptosis have been implicated in germ cell depletion, autophagy seems to play an active role in the life and death decisions of ovarian follicles. Autophagy is morphologically characterized by intracellular reorganization of membranes and increased number of autophagic vesicles that engulf bulk cytoplasm as well as organelles. Autophagy begins with the encapsulation of cytoplasmic constituents in a membrane sac known as autophagosomes. The autophagic vesicles are then destroyed by the lysosomal enzymes such as hydrolases that results in follicular atresia. It seems that apoptosis as well as autophagy could play active roles in germ cells depletion from ovary. Hence, it is important to prevent these two pathways in order to retain the germ cells in ovary of several mammalian species that are either threatened or at the verge of extinction. The involvement of apoptosis and autophagy in germ cell depletion from mammalian ovary is reviewed and possible pathways have been proposed.


Assuntos
Apoptose , Autofagia , Células Germinativas/fisiologia , Mamíferos/fisiologia , Ovário/fisiologia , Animais , Feminino , Atresia Folicular/fisiologia , Folículo Ovariano/fisiologia
20.
J Cell Physiol ; 233(8): 5530-5536, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29331044

RESUMO

In mammals, journey from metaphase-I (M-I) to metaphase-II (M-II) is important since oocyte extrude first polar body (PB-I) and gets converted into haploid gamete. The molecular and cellular changes associated with meiotic cell cycle progression from M-I to M-II stage and extrusion of PB-I remain ill understood. Several factors drive oocyte meiosis from M-I to M-II stage. The mitogen-activated protein kinase3/1 (MAPK3/1), signal molecules and Rho family GTPases act through various pathways to drive cell cycle progression from M-I to M-II stage. The down regulation of MOS/MEK/MAPK3/1 pathway results in the activation of anaphase-promoting complex/cyclosome (APC/C). The active APC/C destabilizes maturation promoting factor (MPF) and induces meiotic resumption. Several signal molecules such as, c-Jun N-terminal kinase (JNK2), SENP3, mitotic kinesin-like protein 2 (MKlp2), regulator of G-protein signaling (RGS2), Epsin2, polo-like kinase 1 (Plk1) are directly or indirectly involved in chromosomal segregation. Rho family GTPase is another enzyme that along with cell division cycle (Cdc42) to form actomyosin contractile ring required for chromosomal segregation. In the presence of origin recognition complex (ORC4), eccentrically localized haploid set of chromosomes trigger cortex differentiation and determine the division site for polar body formation. The actomyosin contractile activity at the site of division plane helps to form cytokinetic furrow that results in the formation and extrusion of PB-I. Indeed, oocyte journey from M-I to M-II stage is coordinated by several factors and pathways that enable oocyte to extrude PB-I. Quality of oocyte directly impact fertilization rate, early embryonic development, and reproductive outcome in mammals.


Assuntos
Mamíferos/fisiologia , Metáfase/fisiologia , Oócitos/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Cromossomos/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Mamíferos/metabolismo , Fator Promotor de Maturação/metabolismo , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...