Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 6(5): 3138-3146, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38828040

RESUMO

Antiferromagnets are a class of magnetic materials of great interest in spintronic devices because of their stability and ultrafast dynamics. When interfaced with an organic molecular layer, antiferromagnetic (AF) films are expected to form a spinterface that can allow fine control of specific AF properties. In this paper, we investigate spinterface effects on CoO, an AF oxide. To access the magnetic state of the antiferromagnet, we couple it to a ferromagnetic Co film via an exchange bias (EB) effect. In this way, the formation of a spinterface is detected through changes induced on the CoO/Co EB system. We demonstrate that C60 and Gaq3 adsorption on CoO shifts its blocking temperature; in turn, an increase in both the EB fields and the coercivities is observed on the EB-coupled Co layer. Ab initio calculations for the CoO/C60 interface indicate that the molecular adsorption is responsible for a charge redistribution on the CoO layer that alters the occupation of the d orbitals of Co atoms and, to a smaller extent, the p orbitals of oxygen. As a result, the AF coupling between Co atoms in the CoO is enhanced. Considering the granular nature of CoO, a larger AF stability upon molecular adsorption is then associated with a larger number of AF grains that are stable upon reversal of the Co layer.

2.
J Phys Condens Matter ; 33(9): 095802, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33126226

RESUMO

The photo-spin-voltaic effect is revealed by the presence of a spin voltage generated by photons when a non-magnetic metal (e.g., Pt) is in close proximity to a ferrimagnetic insulator (e.g., Y3Fe5O12 (YIG)). This is attributed to the excited electrons and holes diffusing from the proximized layer near the interface to the metallic surface. By using a dual-ion-beam sputtering deposition technique, a metallic PtMn layer was deposited on YIG /Gd3Ga5O12 (GGG) (111) substrates. We report on the photo-induced-spin voltaic effect in a PtMn/YIG/GGG heterostructure. The sign of the photo-generated voltage was found to switch with magnetic field polarity and its intensity to decrease with increasing PtMn thickness. This indicates that spin-polarized electrons are confined near the interface in the metal. Photo-excitation of these carriers, together with spin-orbit coupling with Pt atoms, is at the origin of the measured transverse voltage. The design may find applications in antiferromagnetic spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...