Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Ultrason Sonochem ; 108: 106975, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38945052

RESUMO

The study aimed to extract and encapsulate betalain pigment from prickly pear (Opuntia ficus-indica) using ultrasound-assisted extraction and eco-friendly glycerol. Subsequent analysis encompassed assessing its thermal stability, shelf-life, bio-accessibility, and biological properties. The process optimization employed Response Surface Methodology (RSM), focusing on glycerol concentration (20-50 %), sample to solvent ratio (1:10-1:20), temperature (30-60 °C), and time (10-30 min). Optimal conditions were determined as 23.15 % glycerol, 1:10 sample to solvent ratio, 10.43 min treatment time, and 31.15 °C temperature. Under these conditions, betalain content reached 858.28 mg/L with a 93.76 % encapsulation efficiency. Thermal stability tests (80-180 °C; 30 & 60 min) showed degradation of betalain with higher temperatures and longer durations, affecting the visual aspect (ΔE) of the pigment. Encapsulated betalain exhibited favorable shelf stability, with optimal storage life of 404.27 days at 4 °C in amber conditions, compared to 271.99 days at 4 °C without amber, 141.92 days at 25 °C without amber, and 134.22 days at 25 °C with amber. Bio-accessibility of encapsulated betalain was significantly higher (2.05 ± 0.03 %) than conventionally extracted pigment (1.03 ± 0.09 %). The encapsulated pigment displayed strong anti-inflammatory properties in dosages of 2-20 µL, with no cytotoxic effects. Additionally, incorporation into gummies was successful and visually approved by sensory panellists. Glycerol proved to be a green encapsulating agent for betalain, offering high shelf life and bio-accessibility, making it suitable for food industry applications. The encapsulated pigment demonstrated robust thermal stability and shelf life, making it suitable for food industry applications. This study highlights glycerol's potential as a sustainable alternative for natural pigment extraction.

2.
Carbohydr Res ; 541: 109150, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788560

RESUMO

Aim of the study was to optimize and produce beta-mannanase at fermenter scale by using cheaper minimal media. Increased production of beta-mannanase from Microbacterium camelliasinensis CIAB417 was achieved by heterologous expression in E. coli BL21 (DE3). The scale-up production of beta-mannanase was optimized from shake flask to 5-L fermenter. The cost-effective minimal media (M9+e) without any vitamins was found to be most effective and optimized for culturing the cells. The same media displayed no significant fluctuation in the pH while culturing the cells for the production of beta-mannanase both at shake flask and fermenter level. Additionally, E. coli cells were able to produce similar amount of dry cell weight and recombinant beta-mannanase both in the presence of micro and macro-oxygen environment. The optimized media was demonstrated to show no significant drop in pH throughout the recombinant protein production process. In one litre medium, 2.0314 g dry weight of E. coli cells yielded 1.8 g of purified recombinant beta-mannanase. The purified enzyme was lyophilized and demonstrated to hydrolyse locust bean gum to release mannooligosaccharides.


Assuntos
Escherichia coli , Fermentação , Proteínas Recombinantes , beta-Manosidase , beta-Manosidase/metabolismo , beta-Manosidase/genética , beta-Manosidase/biossíntese , beta-Manosidase/química , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Mananas/metabolismo , Mananas/química , Mananas/biossíntese , Reatores Biológicos , Concentração de Íons de Hidrogênio , Aerobiose , Galactanos/metabolismo , Galactanos/biossíntese , Galactanos/química , Meios de Cultura/química , Meios de Cultura/metabolismo , Gomas Vegetais/química , Gomas Vegetais/metabolismo , Actinobacteria/enzimologia , Actinobacteria/metabolismo , Actinobacteria/genética , Hidrólise
3.
Med Biol Eng Comput ; 62(5): 1503-1518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300436

RESUMO

In this paper, we propose a new robust and fast learning technique by investigating the effect of integration of quaternion and interval type II fuzzy logic along with non-iterative, parameter free deterministic learning machine (DLM) pertaining to face recognition problem. The traditional learning techniques did not account colour information and degree of pixel wise association of individual pixel of a colour face image in their network. Therefore, this paper presents a new technique named quaternion interval type II based deterministic learning machine (QIntTyII-DLM), which considers the interrelationship between three colour channels viz. red, green, and blue (RGB) by representing each colour pixel of a colour image in quaternion number sequence. Here, quaternion vector representation of a colour face image is fuzzified using interval type II fuzzy logic. This reduces the redundancy between pixels of different colour channels and also transforms colour channels of the image to orthogonal colour space. Thereafter, classification is performed using DLM. Experiments performed (on four standard datasets AR, Georgia Tech, Indian, face (female) and faces 94 (male) face datasets) and comparison done with other existing techniques proves that the proposed technique gives better results in terms of percentage error rate (reduces approximately 10-12%) and computational speed.


Assuntos
Reconhecimento Facial , Lógica Fuzzy , Feminino , Masculino , Humanos , Cor , Aprendizagem
4.
Drug Discov Today ; 29(4): 103924, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401878

RESUMO

Cancer remains one of the most devastating diseases, necessitating innovative and precise therapeutic solutions. The emergence of 3D bioprinting has revolutionized the platform of cancer therapy by offering bespoke solutions for drug screening, tumor modeling, and personalized medicine. The utilization of 3D bioprinting enables the fabrication of complex tumor models that closely mimic the in vivo microenvironment, facilitating more accurate drug testing and personalized treatment strategies. Moreover, 3D bioprinting also provides a platform for the development of implantable scaffolds as a therapeutic solution to cancer. In this review, we highlight the application of 3D bioprinting for cancer therapy along with current advancements in cancer 3D model development with recent case studies.


Assuntos
Bioimpressão , Neoplasias , Humanos , Impressão Tridimensional , Neoplasias/tratamento farmacológico , Medicina de Precisão , Pesquisa , Engenharia Tecidual , Microambiente Tumoral
5.
Sci Total Environ ; 904: 166791, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678522

RESUMO

Electrical and electronic waste (e-waste) is considered as resource and secondary source of metals, and is being recycled for recovery of precious and base metals. But the processes of recycling and the waste generated during e-waste recycling in informal and formal sectors contribute toxic metals in to the environment. This work aimed to compare the environmental and health impacts of informal and formal e-waste recycling facilities at New Delhi and Bhiwadi Industrial area in India, respectively. Here, concentrations of Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, V, Zn, and Ag, and As in surface dust collected from informal and formal recycling sectors and their associated pollution, human health and ecological risk are presented. Metal concentrations were higher than the background levels in both sectors. Contamination factor (Cf), contamination degree (Cdeg), pollution load index (PLI), geo-accumulation index (Igeo) and enrichment factor (EnF) of metals indicated severe pollution levels in both sectors. However, contamination in informal sector was comparatively higher than the formal sector. Sampling sites in both sectors had very high ecological risk. Storage, dismantling/shredding and recycling techniques were contributors of metals in surface dust in formal sector whereas fumes deposition, re-suspension, and dried by-products during acid bath treatments were additional sources in informal sector. Metal pollution depends on metal(s), e-waste type(s) and recycling sector(s). Total non-carcinogenic health risk due to metals was 6.5E+00 and 6.0E+01 and 6.2E+00 and 5.5E+01 in adult and children in informal and formal sectors, respectively. Total carcinogenic risk was 3.3E-03 and 7.2E-03 in informal and formal sectors, respectively. Ingestion was major pathways of metals followed by dermal and inhalation and children were more prone to risk compared to adults. Formal sectors too cause metal pollution but to lesser degree compared to informal. More effective pollution control measures are required in formal sector to control environmental pollution.


Assuntos
Resíduo Eletrônico , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Metais Pesados/análise , Resíduo Eletrônico/análise , Poeira/análise , Poluentes do Solo/análise , Solo , Carcinógenos , Medição de Risco , Reciclagem , Índia , Monitoramento Ambiental , China
6.
RSC Adv ; 13(34): 24162-24173, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577104

RESUMO

The presented study aims to explore the potential sources of common bio-wastes that could be successfully processed without any leftovers into materials for energy conversion and storage devices. We used chicken eggshells as an environmentally friendly precursor for electrode fillers in electrochemical capacitors (calcinated OS600 and OS900) and anode materials in Li-ion batteries (carbonized EM600 and EM900). Both groups of materials were obtained at two different temperatures to investigate the influence of their composition and properties on the electrochemical performance. Electrochemical capacitors with OS600 and OS900 substituted for 10 wt% of commercial activated carbon supplied similar capacitances, with OS600 stabilizing the long-term performance of the device. Also, both obtained anode materials are suitable for operation in Li-ion batteries, supplying a capacity of around 280 mA h g-1. Notably, EM900 is characterized by a well-developed structure, and as an anode, it exhibited better capacity retention of over 84%.

7.
Environ Sci Pollut Res Int ; 30(49): 107435-107464, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37452254

RESUMO

Microplastic (MP) pollution has aroused a tremendous amount of public and scientific interest worldwide. MPs are found widely ranging from terrestrial to aquatic ecosystems primarily due to the over-exploitation of plastic products and unscientific disposal of plastic waste. There is a large availability of scientific literature on MP pollution in the terrestrial and aquatic ecosystems, especially the marine environments; however, only recently has greater scientific attention been focused on the presence of MPs in the air and its retrospective health implications. Besides, atmospheric transport has been reported to be an important pathway of transport of MPs to the pristine regions of the world. From a health perspective, existing studies suggest that airborne MPs are priority pollutant vectors, that may penetrate deep into the body through inhalation leading to adverse health impacts such as neurotoxicity, cancer, respiratory problems, cytotoxicity, and many more. However, their effects on indoor and outdoor air quality, and on human health are not yet clearly understood due to the lack of enough research studies on that and the non-availability of established scientific protocols for their characterization. This scientific review entails important information concerning the abundance of atmospheric MPs worldwide within the existing literature. A thorough comparison of existing sampling and analytical protocols has been presented. Besides, this review has unveiled the areas of scientific concern especially air quality monitoring which requires immediate attention, with the information gaps to be filled have been addressed.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Estudos Retrospectivos , Monitoramento Ambiental , Poluentes Químicos da Água/análise
8.
Enzyme Microb Technol ; 169: 110284, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406591

RESUMO

A gene glu1 (WP_243232135.1) coding for ß-glucosidase from the genome of Microbacterium sp. CIAB417 was characterized for its cold adaptive nature and tolerance to high levels of glucose and ethanol. The phylogenetic analysis suggested the close association of glu1 with a similar gene from a mesophilic bacterium Microbacterium indicum. The purified recombinant GLU1 displayed its optimal activity and stability at pH 5 and temperature 30á´¼C. Additionally, the presence of L3 loop in GLU1 suggested its cold adaptive nature. The glucose tolerant Gate keeper residues (Leu 174 & Trp 169) with a distance of ∼ 6.953 Å between them was also predicted in GLU1. The GLU1 enzyme showed ≥ 95% and ≥ 40% relative activity in the presence of 5 M glucose and 20% ethanol. The Vmax, Km, and Kcat values of GLU1 for cellobiose substrate were observed to be 45.22 U/mg, 3.5 mM, and 41.0157 s-1, respectively. The GLU1 was found to be highly efficient in hydrolysis of celloologosaccharides (C2-C5), lactose and safranal picrocrocin into glucose. Hence, cold adaptive GLU1 with very high glucose and ethanol tolerance could be very useful in bio-refinery, dairy, and flavor industries.


Assuntos
Microbacterium , beta-Glucosidase , beta-Glucosidase/metabolismo , Microbacterium/metabolismo , Filogenia , Temperatura , Hidrólise , Glucose , Etanol/química , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Estabilidade Enzimática
9.
3 Biotech ; 13(6): 177, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188294

RESUMO

Chickpea (Cicer arietinum L.) seeds are valued for their nutritional scores and limited information on the molecular mechanisms of chickpea fertilization and seed development is available. In the current work, comparative transcriptome analysis was performed on two different stages of chickpea ovules (pre- and post-fertilization) to identify key regulatory transcripts. Two-staged transcriptome sequencing was generated and over 208 million reads were mapped to quantify transcript abundance during fertilization events. Mapping to the reference genome showed that the majority (92.88%) of high-quality Illumina reads were aligned to the chickpea genome. Reference-guided genome and transcriptome assembly yielded a total of 28,783 genes. Of these, 3399 genes were differentially expressed after the fertilization event. These involve upregulated genes including a protease-like secreted in CO(2) response (LOC101500970), amino acid permease 4-like (LOC101506539), and downregulated genes MYB-related protein 305-like (LOC101493897), receptor like protein 29 (LOC101491695). WGCNA analysis and pairwise comparison of datasets, successfully constructed four co-expression modules. Transcription factor families including bHLH, MYB, MYB-related, C2H2 zinc finger, ERF, WRKY and NAC transcription factor were also found to be activated after fertilization. Activation of these genes and transcription factors results in the accumulation of carbohydrates and proteins by enhancing their trafficking and biosynthesis. Total 17 differentially expressed genes, were randomly selected for qRT-PCR for validation of transcriptome analysis and showed statistically significant correlations with the transcriptome data. Our findings provide insights into the regulatory mechanisms underlying changes in fertilized chickpea ovules. This work may come closer to a comprehensive understanding of the mechanisms that initiate developmental events in chickpea seeds after fertilization. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03599-8.

10.
Environ Geochem Health ; 45(12): 9041-9066, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36932290

RESUMO

Urban spaces have become sink for metal-rich waste, particularly in unorganized industrial clusters and metro-cities. Geochemical distribution of metals in different forms and their mobility and bioavailability in topsoils of Bhiwadi Industrial Cluster (BIC) near New Delhi are studies following m-BCR-SEP. Contamination factor (Cf), risk assessment code (RAC), ecological risk assessment (Er), and carcinogenic and non-carcinogenic health risk (HRA) were calculated to assess health and environmental risks. Residual fraction (F4) contained considerable amounts of Cd (57.2%), Cr (81.5%), Fe (86.1%), Mn (62.5%), Ni (58.3%), and V (71.4%). Pb was present in reducible fraction (F2; 52.8%), whereas Cu was distributed in F2 (33.3%) and F4 (31.6%). Zn showed equal distribution in acid exchangeable (F1; 33.9%) and oxidizable fraction (F3; 32.5%). High Cf was observed for Zn (0.9-20.9), Cu (0.46-17) and Pb (0.2-9.9). RAC indicated high risk of Cd, Cu, Mn, Ni, and Zn due to their high mobility and toxicity. High potential bioavailability of Cu, Pb, and Zn (> 65%) was found in samples collected near to metal casting, electroplating, and automobile part manufacturing industries. Considerable to extremely high ecological risk was observed for Cd, low to high risk for Cu, low risk to moderate risk for Cr, Mn, Ni, Zn, and Pb. All topsoil samples were in low to very high-risk range for metals. Ingestion was major pathway of metals followed by dermal and inhalation. Children were more prone to non-carcinogenic risks (hazardous index: 3.6). Topsoils had high carcinogenic risk to exposed population for Cd, Cr, Ni, and Pb.


Assuntos
Metais Pesados , Criança , Humanos , Metais Pesados/toxicidade , Metais Pesados/análise , Disponibilidade Biológica , Cádmio , Chumbo , Monitoramento Ambiental , Medição de Risco , Solo , Índia , China
11.
Int J Biol Macromol ; 238: 124054, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36933595

RESUMO

Clustered regularly interspersed short pallindromic repeats (CRISPR) and CRISPR associated proteins (Cas) system (CRISPR-Cas) came into light as prokaryotic defence mechanism for adaptive immune response. CRISPR-Cas works by integrating short sequences of the target genome (spacers) into the CRISPR locus. The locus containing spacers interspersed repeats is further expressed into small guide CRISPR RNA (crRNA) which is then deployed by the Cas proteins to evade the target genome. Based on the Cas proteins CRISPR-Cas is classified according to polythetic system of classification. The characteristic of the CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new arenas due to which today CRISPR-Cas has evolved as cutting end technique in the field of genome editing. Here, we discuss about the evolution of CRISPR, its classification and various Cas systems including the designing and molecular mechanism of CRISPR-Cas. Applications of CRISPR-Cas as a genome editing tools are also highlighted in the areas such as agriculture, and anticancer therapy. Briefly discuss the role of CRISPR and its Cas systems in the diagnosis of COVID-19 and its possible preventive measures. The challenges in existing CRISP-Cas technologies and their potential solutions are also discussed briefly.


Assuntos
COVID-19 , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , COVID-19/genética , Genoma
12.
Arch Environ Contam Toxicol ; 84(2): 267-283, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36764952

RESUMO

In this study, distribution of metals in different geochemical forms, their mobility and bioavailability in bulk surface dust samples of Bhiwadi industrial cluster (BIC) in Rajasthan, India, was assessed by modified Community Bureau of Reference (m-BCR) sequential extraction procedure. Potential risk of metals in surface dust to environment and human health was evaluated using Contamination factor (Cf), Mobility Factor (MF) and Risk Assessment Code (RAC), and carcinogenic and non-carcinogenic health risk. Residual fraction contained significant amount of metals as Cd(55.86%), Cr(86.05%), Fe(90.06%), Mn(69.94%), Ni(66.08%), and V(71.80%). Pb(52.43%) was present in reducible fraction, while Cu was equally distributed in reducible (27.66%) and oxidizable (28.20%) fractions. Zn was equally distributed in acid exchangeable (33.15%) and reducible (35.01%) fractions. High Cf values were observed for Zn (1.32-16.98), followed by Pb (0.38-11.23) and Cu (0.26-8.22). RAC indicated high risk of Cd, Mn, Ni and Zn to environment due to their high mobility and toxic nature. Zn, Pb, Cu and Cd showed highest mobility (potential bioavailability) in samples collected around metal casting, electroplating, and automobile part industries. Data indicated that metals can bio-available with the changes in redox conditions in environment. Ingestion was major pathway for carcinogenic and non-carcinogenic health risks followed by dermal and inhalation. Hazardous Index value (6.32) indicated higher susceptibility of children for non-carcinogenic risk as compared to adults. Carcinogenic risk of Cr, Cd, Ni and Pb was higher than acceptable levels in surface dust, suggesting a high risk of cancer to exposed population.


Assuntos
Poeira , Metais Pesados , Adulto , Criança , Humanos , Poeira/análise , Metais Pesados/análise , Disponibilidade Biológica , Cádmio , Chumbo , Monitoramento Ambiental/métodos , Índia , Medição de Risco , Carcinógenos , China , Cidades
13.
J Biotechnol ; 362: 45-53, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592665

RESUMO

A hexagonal mesoporous molecular sieve-like structure of MCM41 and SBA15 with a large surface area was used to immobilize protein L-ribose isomerase (L-RI) through covalent linkages. The amino group of APTES functionalized nanosilica support MCM41 and SBA15 interacted with glutaraldehyde to promote bidentate linkage and on other side with amino group of enzyme. The use of mesoporous silica matrix for immobilization was observed to conserve the distinctive properties of the protein. The various operational conditions optimized for covalent conjugation of protein with the silica support were found to be dependent on enzyme support ratio, immobilization temperature and time. The immobilization yield of L-RI on MCM41 and SBA15 was achieved to be 60 % (600 mg enzyme /g matrix) and 45 % (450 mg enzyme/g matrix), respectively under the optimized conditions. The immobilized biocatalyst was characterized by various analytical techniques like HR-TEM, EDS, FTIR, TGA and BET. Effects of different experimental conditions were optimized to study enzyme kinetics, pH, temperature, bioconversion, reusability, metal ion effect and storage stability. The biocatalytic efficiency (kcat/Km) was increased by 1.2 fold on immobilization with the catalytic activity of 39.64 IU. Increase in the catalytic efficiency after immobilization could be due to the suitable orientation of enzyme active site and improved accessibility for substrate binding. The immobilization of L-RI on mesoporous silica support could improve the biocatalytic activity, storage stability and reusability. The immobilized biocatalyst was found to be reusable for more than 4 cycles retaining more than 50 % of catalytic activity and promoting the synthesis of a rare sugar L-ribose from L-ribulose with a conversion yield of 22 % in 2 h time.


Assuntos
Enzimas Imobilizadas , Ribose , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Enzimas Imobilizadas/química , Dióxido de Silício/química , Temperatura
14.
Int J Biol Macromol ; 231: 123406, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702217

RESUMO

Aim of present study was to develop biological catalysts of L-arabinose isomerase (L-AI) by immobilizing on four different supports such as multiwalled carbon nanotube (MWCNT), graphene oxide (GOx), Santa Barbara Amorphous (SBA-15) and mobile composite matter (MCM-41). Also, comparative analysis of the developed catalysts was performed to evolve the best in terms of transformation efficiency for D-tagatose production. The developed nano-enzyme conjugates (NECs) were characterized using the high resolution transmission electron microscopy (HR-TEM) and elemental analysis was performed by energy dispersive X-ray spectroscopy (EDS). The functional groups were investigated by Fourier transform infra red spectroscopy. Also, the thermo gravimetric analysis (TGA) was employed to plot a thermal degradation weight loss profile of NECs. The conjugated L-AI with MWCNT and GOx were found to be more promising immobilized catalysts due to their ability to provide more surface area. Conversion of D-Galactose to D-Tagatose at moderate temperature and pH was observed to attain the equilibrium level of transformation (~50%). On the contrary, NECs prepared using SBA-15 and MCM-41 as support matrix were unable to reach the equilibrium level of conversion. Additionally, the developed NECs were suitable for reuse in multiple batch cycles. Thus, promising nanotechnology coupled with biocatalysis made the transformation of D-Galactose into D-tagatose more economically sustainable.


Assuntos
Aldose-Cetose Isomerases , Galactose , Galactose/química , Açúcares , Hexoses/química , Aldose-Cetose Isomerases/metabolismo
15.
Environ Sci Pollut Res Int ; 30(10): 25635-25649, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36001258

RESUMO

In this study, fog water samples collected from New Delhi and its satellite township Sonipat for 2 years 2015-16 and 2016-17 are characterized by soluble ions and internal buffering capacity. The pH of fog water is close to 5.6 due to the limited contributions of Ca2+ and Mg2+ ions by virtue of low wind speed during winters. NH4+ and Ca2+ were dominant cations in fog at both sites during both sampling years. NH4+ and Ca2+ contributions were similar in New Delhi during 2015-16, but Ca2+ increased during 2016-17 on account of construction activities. Emissions from agriculture fields through fertilizer applications and animal breeding lead to an increase of NH4+ compared to Ca2+ at Sonipat. SO42- was comparable with Cl-, followed by NO3- ions. Plastic burning in this region during wintertime was a possible source of Cl- ions. Acid neutralization decreases as NH4+ > Ca2+ and Mg2+ for all samples in Sonipat and as Ca2+ > NH4+ and Mg2+ in New Delhi. Higher NO3- in New Delhi was due to vehicular emissions. Vehicular emissions in New Delhi and agriculture fields in Sonipat were dominant sources of organic acids. Observed internal buffering capacity was different than theoretical values over a pH range from 4 to 7 in New Delhi, whereas both buffering capacities were close to each other in Sonipat samples. Lead in fog water at both sites was higher than prescribed safe limits for drinking water. Pollution sources were responsible for higher concentrations of metals, organic acids, and soluble ions in fog in New Delhi compared to that in Sonipat.


Assuntos
Poluentes Atmosféricos , Água , Água/química , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Estações do Ano , Íons/análise , Compostos Orgânicos , Índia , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise
16.
Environ Monit Assess ; 195(1): 234, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36574101

RESUMO

In an agricultural country like India, inorganic fertilizers are the major contributors of atmospheric NH3 in rural areas affecting soil, vegetation and water bodies. In this study, day-night and seasonal variation of ammonia emissions were measured from July 2017 to June 2018 during Kharif and Rabi crop seasons at a rural agricultural site in Jhajjar district of Haryana. Also, NH3 emission inventory is prepared for the amount of fertilizers applied during its basal and top dressing. NH3 concentrations were noticed significantly lower after basal dressing of DAP fertilizers as compared to the concentrations after top dressing of urea. NH3 concentration in air increased with decrease in water saturation of the soil. NH3 emission was recorded as 1.4 to 45.2, 63.1 to 190.9, and 98.9 to 187.5 µg m-3 during sowing, fertilizer addition, and grain filling stages, respectively, in Kharif season. Apart from these crop stages, NH3 was measured as 56.8 to 249.5 µg m-3 during crop residue burning period. On the other hand, NH3 emissions ranged from 22.9 to 68.4, 59.4 to 104.71, 26.3 to 56.0, 48.2 to 147.2, and 21.5 to 80.4 µg m-3 during sowing, crown root initiation (CRI), panicle initiation, grain filling, and maturity crop, respectively, in Rabi season. The average NH3 concentrations during Kharif season (125.3 µg m-3) were significantly greater than the concentrations during Rabi season (51.8 µg m-3). However, a reduction in the NH3 values was observed in the period between Kharif and Rabi seasons, which could be attributed to the wet deposition during monsoon and gas to particle conversion due to less temperature conditions during the periods.


Assuntos
Gases , Solo , Estações do Ano , Fertilizantes/análise , Monitoramento Ambiental , Agricultura , Amônia/análise , Nitrogênio/análise
17.
Membranes (Basel) ; 12(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36295710

RESUMO

This study reports on the impact of elevated recovery (i.e., 80%, 85%, and 90%) on the fouling and performance of air gap membrane distillation (AGMD) with real seawater and landfill leachate wastewater samples using polytetrafluoroethylene (PTFE) polymer membranes. Increasing the feed temperature from 55 °C to 65 °C improved the water flux of seawater and wastewater and shortened the operating time by 42.8% for all recoveries. The average water flux in the 80%, 85%, and 90% recovery experiments at the 65 °C feed temperature was 32%, 37.32%, and 36.7% higher than the case of 55 °C for the same recoveries. The water flux decline was more severe at a higher temperature and recovery. The highest flux decline was observed with a 90% recovery at 65 °C feed temperature, followed by an 85% recovery at 65 °C. Close examination of the foulants layer revealed that seawater formed a cake fouling layer made predominantly of metal oxides. In contrast, the landfill leachate fouling was a combination of pore blocking and cake formation, consisting mainly of carbonous and nitrogenous compounds. Physical cleaning with deionized (DI) water at 55 °C and 65 °C and chemical cleaning with hydrogen peroxide (H2O2) were investigated for their efficiency in removing membrane foulants. Analytical results revealed that seawater fouling caused membrane pore blockage while wastewater fouling formed a porous layer on the membrane surface. The results showed that membrane cleaning with hydrogen peroxide restored >97% of the water flux. Interestingly, the fouling factor in seawater tests was 10%, while it was 16% for the wastewater tests.

18.
Chemosphere ; 308(Pt 2): 136237, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36049636

RESUMO

Membrane cleaning is critical for economic and scientific reasons in wastewater treatment systems. Sodium docusate is a laxative agent and removes cerumen (ear wax). Docusate penetrates the hard ear wax, making it softer and easier to remove. The same concept could be applied to soften and remove fouling layers on the membrane surface. Once softened, the foulants can be easily flushed with water. This innovative approach can address the challenge of developing superior methods to mitigate membrane fouling and material degradation. In this study, we evaluated the efficiency of sodium docusate for cleaning fouled forward osmosis membranes with real landfill leachate wastewater. Experiments were conducted to examine the impact of dose rate, contact time, flow or static conditions, and process configuration (forward osmosis (FO) or pressure retarded osmosis (PRO) upon fouling created by landfill leachate dewatering. A remarkable (99%) flux recovery was achieved using docusate at a small concentration of only 0.1% for 30 min. Furthermore, docusate can also effectively restore flux with static cleaning without using pumps to circulate the cleaning solution. Furthermore, cleaning efficiency can be achieved at neutral pH compatible with most membrane materials. From an economic and energy-saving perspective, static cleaning can almost achieve the same cleaning efficiency as kinetic cleaning for fouled forward osmosis membranes without the expense of additional pumping energy compared to kinetic cleaning. Since pumping energy is a major contributor to the overall energy of the forward osmosis system, it can be minimized to a certain degree by using a static cleaning approach and can bring good energy savings when using larger membrane areas. Studies of the contact angle on the membrane surface indicated that the contact angle was decreased compared to the fouled membrane after cleaning (e.g. 70.3° to 63.2° or FO mode and static cleaning). Scanning Electron Microscopy revealed that the cleaning strategy was successful. Infrared Spectroscopy showed that a small amount of sodium docusate remained on the membrane surface. Docusate is more environmentally friendly than acid or alkaline solutions from an environmental perspective. Furthermore, the cleaning solution can be reused for several cycles without discarding it due to the surfactant properties of docusate.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ácido Dioctil Sulfossuccínico , Laxantes , Membranas Artificiais , Osmose , Sódio , Tensoativos , Águas Residuárias/química , Água
19.
Chemosphere ; 308(Pt 3): 136475, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122744

RESUMO

Road deposited dust (RDD) is an important indicators of heavy metal contamination in urban areas. In this study, we measured eight heavy metals (V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) in RDD collected from 34 different locations in Jammu city represented by different land uses such as industrial, urban-residential, high-density traffic, and sub-urban locations, and evaluated their ecological and health risks. The ratio of metal concentrations in RDD to their respective background levels varied as: Cu (3.94) > Pb (3.75) > Zn (3.01) > Cr (1.75) > Ni (1.51) > Mn (1.40) > V (1.35) > Fe (1.1) suggesting Cr, Ni, Cu, Zn and Pb were enriched anthropogenically. Geospatial maps revealed a heterogeneous distribution of metals in Jammu city with metal(s) specific hotspots primarily localized around high traffic density locations and industrial clusters. The index of geoaccumulation indicated 32%, 26%, 20%, 9%, and 8%, of samples belonged to "moderately polluted" category for Zn, Cu, Pb, Cr, and Ni respectively. Health index (HI) showed low non-carcinogenic hazards of metal contamination to adults but a high hazard to children. Though the values of total carcinogenic risks (TCR) (6.53E-05 to 3.71E-04) considerably exceeded the USEPA acceptable levels (1 × 10-6 ≤ TCR <1 × 10-4) suggesting high carcinogenic risks of metal contamination to both adults and children. Besides potential ecological risk index (PERI) revealed that 56% of samples had PERI >40 suggesting "moderate to high ecological risk" of metal contamination in the Jammu city RDD.


Assuntos
Poeira , Metais Pesados , Adulto , Carcinógenos/análise , Criança , China , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Chumbo , Metais Pesados/análise , Receptores de Antígenos de Linfócitos T , Medição de Risco
20.
Colloids Surf B Biointerfaces ; 217: 112637, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35728372

RESUMO

The biocatalysts are broadly explored in the biological transformation processes. The enzyme cascade catalysis involves various catalytic activities in a sequential process to produce the desired product including the formation of reaction intermediates. Enzyme immobilization is a method in which enzymes are confined within a support or matrix either physically or chemically to enhance their relative stability and catalytic activity in the enzyme cascade catalysis. In view of this, L-arabinose isomerase (L-AI) and L-ribose isomerase (L-RI) were immobilized on zeolite based metal framework as a micro-composite construct (DEMC@L-AI+L-RI) using linker, and metal ions. Such immobilization could be of great significance and provide several advantages like mesoporous surface for enzyme adsorption, desirable functionality in the production of products in enzyme cascade reaction, high storage stability and enhanced recyclability. The developed DEMC@L-AI+L-RI was characterized using SEM, FTIR, CLSM and TGA. The immobilization yield was 32% and loading of enzyme was 22% on the surface of micro-composite. The DEMC@L-AI+L-RI showed relatively stable catalytic activity at pH 5-6 and temperature 40 °C. The catalytic efficiency (kcat/Km) of both the enzymes was increased by 1.5-fold after immobilization. With the immobilized biocatalyst, bioconversion of L-arabinose to L-ribose was 22.6% and D-galactose to D-talose was 15.2%. The reusability of developed biocatalyst for more than six cycles was observed for more than 50% yield of the sugars. The conversion of biomass sugars from beetroot and onion waste residues was 20% and 14% to produce ribose and talose, respectively.


Assuntos
Lactonas , Ribose , Aldose-Cetose Isomerases , Hexoses/química , Concentração de Íons de Hidrogênio , Metais , Ribose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...