Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551472

RESUMO

The emergence, persistence, and spread of antibiotic-resistant microbes is a tremendous public health threat that is considered nowadays a critical One Health issue. In Lebanon, the consumption of raw bovine milk has been recently reported as a result of the financial crisis. The objectives of the current study were (1) to evaluate raw bovine milk samples in a comprehensive manner for the types of antibiotics used and their residues, (2) to determine the presence of mesophilic bacteria, extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), and (3) to determine the associated human health risk caused by drinking raw milk with antibiotic residues among all age categories. LC-MS-MS was used to carry out the analysis. From 200 milk samples, 30 (15%) were found contaminated with four major antibiotics. The highest average concentration detected was for oxytetracyline 31.51 ± 13.23 µg/kg, followed by 5.5 ± 0.55 µg/kg for gentamicin, 4.56 ± 0.73 µg/kg for colistin, and 4.44 ± 0.89 µg/kg for tylosin. The mean contamination among most samples was below the maximum residue limits (MRLs). Upon comparison with the acceptable daily intake (ADI), the estimated daily intake (EDI) across all age groups was acceptable. The hazard quotient (HQ) was also below 1 across all age groups, signifying the absence of associated health risks for the Lebanese consumers. On the other hand, all milk samples were found exceeding the maximum tolerable value of mesophilic flora. Antibiotic-resistant bacteria (ARB) were detected and represented by ESBL-producing E. coli and MRSA isolates. Thus, the greatest threat of antibiotic use in Lebanon does not fall under antibiotic residues but rather the proliferation of antibiotic resistance in potentially pathogenic bacteria. In this study, the virulence profile of detected bacteria was not investigated; thus their pathogenicity remains unknown. Therefore, to mitigate this health threat in Lebanon, a "One Health" action plan against ABR is required. It will provide a framework for continued, more extensive action to reduce the emergence and spread of ABR in Lebanon.

2.
AMB Express ; 12(1): 128, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190582

RESUMO

The gastrointestinal tract is one of the most complex microbiological niches containing beneficial and non-pathogenic bacterial strains of which some may evolve into virulent under specific conditions. Lactobacillus rhamnosus GG is of the most known beneficial species with an ability to protect the intestine as opposed to Staphylococcus epidermidis 444 which causes serious health risks due to its high antimicrobial resistance. This study investigates first the survival and coexistence ability of L. rhamnosus GG, and S. epidermidis 444 at different pH levels. Subsequently, lysozyme's antimicrobial and antibiofilm effect on these two strains was elucidated before adding different concentrations of oxytetracycline hydrochloride antibiotic. Results showed that 50% inhibition of L. rhamnosus GG, S. epidermidis 444, and a co-culture of these planktonic strains were obtained respectively at a lysozyme concentration of 30, 18, and 26 mg/mL after the addition of ethylenediamine tetra-acetic acid (EDTA). At a pH of 7.5, mixing lysozyme (at IC50) and EDTA with oxytetracycline hydrochloride (700 µg/mL) showed an additional bactericidal effect as compared to its known bacteriostatic effect. Similarly, the addition of lysozyme to the antibiotic further increased the biofilm eradication of S. epidermidis 444 and L. rhamnosus GG where a maximal eradication of 70% was reached. Therefore, the potential development of new drugs based on adding a lysozyme-EDTA mixture to different types of antibiotics may be highly promising.

3.
Int J Food Microbiol ; 333: 108831, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32854018

RESUMO

Salmonella enterica subsp. enterica serovars are considered major causes of food poisoning and we performed this study because Salmonella is a burden in Lebanon. The present study investigated the ability of genomic information to predict serovar using a collection of Salmonella isolates from infected humans (n = 24) and contaminated food (n = 63) in Lebanon. Further, the phylogenomic relationships of the serovar the predominated in Lebanon (i.e., S. Enteritidis; n = 25) were investigated in comparison with isolates from other countries (n = 130) based on coregenome single nucleotide polymorphisms (SNPs). Genetic elements, specifically Salmonella pathogenicity islands (SPIs), plasmid replicons, and antibiotic-resistance genes were screened in S. Enteritidis genomes (n = 155). Our results revealed that the Salmonella serovars identification by seroagglutination from the samples isolated in Lebanon (n = 87) was highly correlated with the genomic-based prediction of serovars (80.4-85.0% with SeqSero1 and 93.1-94.2% with SeqSero2). The Salmonella serovars isolated from human and food samples in Lebanon were mainly Enteritidis (28.7%) and Infantis (26%). To a rare extent, other serovars included Amager, Anatum, Bredeney, Chincol, Heidelberg, Hofit, Kentucky, Montevideo, Muenster, Newport, Schwarzengrund, Senftenberg and Typhimurium. In comparison with other countries, S. Enteritidis samples isolated in Lebanon (56 ± 27 intra-group pairwise SNP differences) presented a strong phylogenomic relativeness at the coregenome level with samples, as for example with samples isolated from Syria (65 ± 31 inter-group pairwise SNP differences). Most of the studied S. Enteritidis genomes encoded 10 SPIs involved in survival in immune cells (i.e. SPIs 1, 2, 3, 4, 5, 12, 13, 14, 16 and 17). The plasmid replicons IncFIB (S)_1 and IncFII (S)_1 encoding elements involved in virulence were identified in the majority of the S. Enteritidis genomes (94% and 96%, respectively), the majority exhibiting aminoglycosides (gene aac(6')-Iaa_1). The IncI_1_Alpha replicon responsible for ampicillin-resistance was only detected in 2 of 25 S. Enteritidis Lebanese strains. Genomic-based risk assessment of Salmonella serovars in Lebanon showed that food imported from Syria might be an origin of the S. Enteritidis human cases in Lebanon. The detection of several SPIs involved in the survival, plasmid replicons involved in virulence, and aminoglycoside-resistance genes, emphasizes that S. Enteritidis is of paramount importance for public health in Lebanon and other countries.


Assuntos
Ilhas Genômicas/genética , Salmonella enteritidis/classificação , Salmonella enteritidis/genética , Salmonella/classificação , Salmonella/genética , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/farmacologia , Genômica , Humanos , Líbano , Filogenia , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Saúde Pública , Salmonella/isolamento & purificação , Salmonella enteritidis/isolamento & purificação , Sorogrupo , Virulência , Fatores de Virulência/genética
4.
Microb Drug Resist ; 26(2): 150-159, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31424353

RESUMO

The opportunistic pathogen, Pseudomonas aeruginosa, is a main cause of nosocomial infections in Lebanese hospitals. This pathogen is highly threatening due to its ability to develop multiresistance toward a large variety of antibiotics, including the carbapenem subgroup of ß-lactams. In this study, we surveyed the enzymatic and nonenzymatic mechanisms of carbapenem resistance in several multidrug-resistant (MDR) strains of P. aeruginosa isolated from patients suffering from nosocomial urinary tract infections in a Lebanese hospital. The occurrence of ß-lactamase-encoding genes notably GES, KPC, IMP, VIM, NDM, and OXA, which are characterized by a carbapenemase activity was checked by genomic analyses. Our results provide a first evidence of the occurrence of GES in clinical P. aeruginosa isolates resistant to carbapenems in Lebanon. More interestingly, we showed that almost 40% of the analyzed strains have acquired a dual-carbapenemase secretion of GES-6 and VIM-2 or IMP-15, this being a rare phenomenon among this type of multidrug resistance. Moreover, LC-MS/MS analyses revealed a high prevalence of another enzymatic mechanism of resistance; this is the coexistence of AmpC and Pdc-13 as well as a number of virulence proteins, for instance pilin, lytic transglycosylase, ecotin, chitin-binding protein (Cbp), and TolB-dependent receptor. It is to be noted that a mutation of the oprD2 gene encoding a porin selective for carbapenems has been detected in almost 66% of our strains. All in all, our study reveals by the use of different methods, unusual simultaneous enzymatic (GES, IMP, VIM, pdc13, and AmpC) and nonenzymatic mechanisms of resistance (reduction of OprD2 expression) for MDR Pseudomonas aeruginosa.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , beta-Lactamases/genética , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/genética , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos/genética , Humanos , Líbano/epidemiologia , Testes de Sensibilidade Microbiana , Prevalência , Pseudomonas aeruginosa/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...