Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38900399

RESUMO

PURPOSE: Varicose veins in the lower extremities are dilated subcutaneous varicose veins with a diameter of ≥ 3 mm, caused by increased venous pressure resulting from backflow of blood due to venous valve insufficiency (Gloviczki in Handbook of venous disorders: guidelines of the American venous forum, Hodder Arnold, London, 2009). When diagnosing varicose veins, the shape and thickness of the blood vessels should be accurately visualized in three dimensions. In this study, we investigated a new method for numerical evaluation of vascular morphology related to varicose veins in the lower extremities, using a photoacoustic imaging (PAI) system, which can acquire high-resolution and three-dimensional images noninvasively. METHODS: Nine patients with varicose veins participated in the study, and their images were captured using an optical camera and PAI system. We visualized the vascular structure, created a blood presence density (BPD) heat map, and examined the correlation between BPD and location of varicose veins. RESULTS: The obtained photoacoustic (PA) images demonstrated the ability of this method to visualize vessels ranging from as small as 0.2 mm in diameter to large, dilated vessels in three dimensions. Furthermore, the study revealed a correlation between the high-density part of the BPD heat map generated from the PAI images and the presence of varicose veins. CONCLUSION: PAI is a promising technique for noninvasive and accurate diagnosis of varicose veins in the lower extremities. By providing valuable information on the morphology and hemodynamics of the varicose veins, PAI may facilitate their early detection and treatment.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 15445-15461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37651493

RESUMO

Spectral photoacoustic imaging (PAI) is a new technology that is able to provide 3D geometric structure associated with 1D wavelength-dependent absorption information of the interior of a target in a non-invasive manner. It has potentially broad applications in clinical and medical diagnosis. Unfortunately, the usability of spectral PAI is severely affected by a time-consuming data scanning process and complex noise. Therefore in this study, we propose a reliability-aware restoration framework to recover clean 4D data from incomplete and noisy observations. To the best of our knowledge, this is the first attempt for the 4D spectral PA data restoration problem that solves data completion and denoising simultaneously. We first present a sequence of analyses, including modeling of data reliability in the depth and spectral domains, developing an adaptive correlation graph, and analyzing local patch orientation. On the basis of these analyses, we explore global sparsity and local self-similarity for restoration. We demonstrated the effectiveness of our proposed approach through experiments on real data captured from patients, where our approach outperformed the state-of-the-art methods in both objective evaluation and subjective assessment.

3.
Ultrason Imaging ; 44(2-3): 96-104, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35549598

RESUMO

Photoacoustic (PA) technology can be used for non-invasive imaging of blood vessels. In this paper, we report on our prototype PA imaging system with a newly designed ultrasound sensor and its visualization performance of microvascular in animal. We fabricated an experimental system for animals using a high-frequency sensor. The system has two modes: still image mode by wide scanning and moving image mode by small rotation of sensor array. Optical test target, euthanized mice and rats, and live mice were used as objects. The results of optical test target showed that the spatial resolution was about two times higher than that of our conventional prototype. The image performance in vivo was evaluated in euthanized healthy mice and rats, allowing visualization of detailed blood vessels in the liver and kidneys. In tumor-bearing mice, different results of vascular induction were shown depending on the type of tumor and the method of transplantation. By utilizing the video imaging function, we were able to observe the movement of blood vessels around the tumor. We have demonstrated the feasibility of the system as a less invasive animal experimental device, as it can acquire vascular images in animals in a non-contrast and non-invasive manner.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Animais , Imageamento Tridimensional/métodos , Camundongos , Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Ratos , Ultrassonografia
4.
Arch Plast Surg ; 48(3): 323-328, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34024078

RESUMO

BACKGROUND: Lymphaticovenular anastomosis (LVA) is a minimally invasive surgical procedure used to treat lymphedema. Volumetric measurements and quality-of-life assessments are often performed to assess the effectiveness of LVA, but there is no method that provides information regarding postoperative morphological changes in lymphatic vessels and veins after LVA. Photoacoustic lymphangiography (PAL) is an optical imaging technique that visualizes the distribution of light-absorbing molecules, such as hemoglobin or indocyanine green (ICG), and provides three-dimensional images of superficial lymphatic vessels and the venous system simultaneously. In this study, we performed PAL in lymphedema patients before and after LVA and compared the images to evaluate the effect of LVA. METHODS: PAL was performed using the PAI-05 system in three patients (one man, two women) with lymphedema, including one primary case and two secondary cases, before LVA. ICG fluorescence lymphography was performed in all cases before PAL. Follow-up PAL was performed between 5 days and 5 months after LVA. RESULTS: PAL enabled the simultaneous visualization of clear lymphatic vessels that could not be accurately seen with ICG fluorescence lymphography and veins. We were also able to observe and analyze morphological changes such as the width and the number of lymphatic vessels and veins during the follow-up PAL after LVA. CONCLUSIONS: By comparing preoperative and postoperative PAL images, it was possible to analyze the morphological changes in lymphatic vessels and veins that occurred after LVA. Our study suggests that PAL would be useful when assessing the effect of LVA surgery.

5.
J Surg Oncol ; 121(1): 48-50, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31165483

RESUMO

BACKGROUND AND OBJECTIVES: Photoacoustic lymphangiography, which is based on photoacoustic technology, is an optical imaging that visualizes the distribution of light absorbing tissue components like hemoglobin or melanin, as well as optical absorption contrast imaging agents like indocyanine green (ICG) in the lymphatic channels, with high spatial resolution. In this report, we introduce the three-dimensional (3D) images of human lymphatic vessels obtained with photoacoustic lymphangiography. METHODS: We used the 3D photoacoustic visualization system (PAI-05). Some healthy subjects and lymphedema patients were recruited. To image the lymphatic structures of the limbs ICG was administered subcutaneously as in fluorescence lymphangiography. Photoacoustic images were acquired by irradiating the tissue using a laser at wavelengths of near-infrared region. On the same occasion, fluorescence images were also recorded. RESULTS: The lymphatic vessels up to the diameter of 0.2 mm could be observed three-dimensionally with the venules around them. In the patient-group, dermal backflow patterns were often observed as dense interconnecting 3D structures of lymphatic vessels. Collecting vessels passing below the dermis were also observed, which were not observed by fluorescence lymphography. CONCLUSIONS: Photoacoustic lymphangiography provided the detailed observation of each lymphatic vessel, leading to deeper understanding of 3D structures and physiological state of the vessel.


Assuntos
Vasos Linfáticos/diagnóstico por imagem , Linfedema/diagnóstico por imagem , Linfografia/métodos , Técnicas Fotoacústicas/métodos , Estudos de Casos e Controles , Feminino , Angiofluoresceinografia/métodos , Humanos , Imageamento Tridimensional/métodos , Pessoa de Meia-Idade
6.
Sci Rep ; 8(1): 14930, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297721

RESUMO

Photoacoustic (PA) imaging (PAI) has been shown to be a promising tool for non-invasive blood vessel imaging. A PAI system comprising a hemispherical detector array (HDA) has been reported previously as a method providing high morphological reproducibility. However, further improvements in diagnostic capability will require improving the image quality of PAI and fusing functional and morphological imaging. Our newly developed PAI system prototype not only enhances the PA image resolution but also acquires ultrasonic (US) B-mode images at continuous positions in the same coordinate axes. In addition, the pulse-to-pulse alternating laser irradiation shortens the measurement time difference between two wavelengths. We scanned extremities and breasts in an imaging region 140 mm in diameter and obtained 3D-PA images of fine blood vessels, including arterioles and venules. We could estimate whether a vessel was an artery or a vein by using the S-factor obtained from the PA images at two wavelengths, which corresponds approximately to the haemoglobin oxygen saturation. Furthermore, we observed tumour-related blood vessels around breast tumours with unprecedented resolution. In the future, clinical studies with our new PAI system will help to elucidate various mechanisms of vascular-associated diseases and events.


Assuntos
Arteríolas/diagnóstico por imagem , Técnicas Fotoacústicas/instrumentação , Tomografia/instrumentação , Vênulas/diagnóstico por imagem , Algoritmos , Desenho de Equipamento , Feminino , Humanos , Técnicas Fotoacústicas/métodos , Tomografia/métodos
7.
Photoacoustics ; 11: 6-13, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30003041

RESUMO

This study aimed to identify the characteristics of the vascular network in the superficial subcutaneous layer of the breast and to analyze differences between breasts with cancer and contralateral unaffected breasts using vessel branching points (VBPs) detected by three-dimensional photoacoustic imaging with a hemispherical detector array. In 22 patients with unilateral breast cancer, the average VBP counts to a depth of 7 mm below the skin surface were significantly greater in breasts with cancer than in the contralateral unaffected breasts (p < 0.01). The ratio of the VBP count in the breasts with cancer to that in the contralateral breasts was significantly increased in patients with a high histologic grade (p = 0.03), those with estrogen receptor-negative disease (p < 0.01), and those with highly proliferative disease (p < 0.01). These preliminary findings indicate that a higher number of VBPs in the superficial subcutaneous layer of the breast might be a biomarker for primary breast cancer.

8.
F1000Res ; 7: 1813, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30854189

RESUMO

Background: A breast-specific photoacoustic imaging (PAI) system prototype equipped with a hemispherical detector array (HDA) has been reported as a promising system configuration for providing high morphological reproducibility for vascular structures in living bodies. Methods: To image the vasculature of human limbs, a newly designed PAI system prototype (PAI-05) with an HDA with a higher density sensor arrangement was developed. The basic device configuration mimicked that of a previously reported breast-specific PAI system. A new imaging table and a holding tray for imaging a subject's limb were adopted. Results: The device's performance was verified using a phantom. Contrast of 8.5 was obtained at a depth of 2 cm, and the viewing angle reached up to 70 degrees, showing sufficient performance for limb imaging. An arbitrary wavelength was set, and a reasonable PA signal intensity dependent on the wavelength was obtained. To prove the concept of imaging human limbs, various parts of the subject were scanned. High-quality still images of a living human with a wider size than that previously reported were obtained by scanning within the horizontal plane and averaging the images. The maximum field of view (FOV) was 270 mm × 180 mm. Even in movie mode, one-shot 3D volumetric data were obtained in an FOV range of 20 mm in diameter, which is larger than values in previous reports. By continuously acquiring these images, we were able to produce motion pictures. Conclusion: We developed a PAI prototype system equipped with an HDA suitable for imaging limbs. As a result, the subject could be scanned over a wide range while in a more comfortable position, and high-quality still images and motion pictures could be obtained.

9.
Biomed Eng Lett ; 8(2): 157-165, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30603200

RESUMO

To practically apply photoacoustic (PA) imaging technology in medicine, we have developed prototypes of a photoacoustic mammography (PAM) device to acquire images for diagnosing breast cancer in the Kyoto University/Canon joint research project (CK project supported by MEXT, Japan). First, the basic ability of the PAM system to visualize the network of blood vessels and the Hb saturation index was evaluated using a prototype of PAM that has a flat scanning detector and is capable of simultaneously acquiring photoacoustic (PA) and ultrasound images. Next, another prototype of a PAM device with hemispherical sensors was developed to improve the visibility of the 3D structure of vessels by reducing the limited view effect. In clinical examination of breast cancer cases, the PAM system allowed 3D visualization of fine vessel networks with a spatial resolution of a half-millimeter and enabled us to determine the features of tumor-related vascular structures in human breast cancer. In addition, the oxygen saturation status of Hb was visualized using two different wavelengths, enabling more precise characterization of the tumor microenvironment. Results of clinical evaluation using our developed prototype of a PAM device confirmed that PA imaging technology has the potential to promote early detection of breast cancer, and realization of its practical use is expected in the near future.

10.
Appl Opt ; 43(25): 4922-8, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15449479

RESUMO

A 1500-nm-band laser signal is upconverted to the mid-visible part of the spectrum by quasi-phase matched, sum-frequency generation with an 800-nm-band laser pump in a periodically poled KTiOPO4. For an appropriate combination of the two fundamental wavelengths, an acceptance bandwidth of 40-60 nm cm for the pump wavelength is attainable simultaneously with a temperature acceptance bandwidth of 60-70 degrees C cm in an angularly noncritical condition. Using a distributed feedback laser at 1590 nm and a Fabry-Perot laser at 807 nm, we demonstrate a temperature tolerance as large as 60 degrees C with a 10-mm-long crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...