Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(3): e0080522, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35467414

RESUMO

Microcin C (McC)-like compounds are natural Trojan horse peptide-nucleotide antibiotics produced by diverse bacteria. The ribosomally synthesized peptide parts of these antibiotics are responsible for their facilitated transport into susceptible cells. Once inside the cell, the peptide part is degraded, releasing the toxic payload, an isoaspartyl-nucleotide that inhibits aspartyl-tRNA synthetase, an enzyme essential for protein synthesis. Bacteria that produce microcin C-like compounds have evolved multiple ways to avoid self-intoxication. Here, we describe a new strategy through the action of S51 family peptidases, which we name MccG. MccG cleaves the toxic isoaspartyl-nucleotide, rendering it inactive. While some MccG homologs are encoded by gene clusters responsible for biosynthesis of McC-like compounds, most are encoded by standalone genes whose products may provide a basal level of resistance to peptide-nucleotide antibiotics in phylogenetically distant bacteria. IMPORTANCE Here, we identified a natural substrate for a major phylogenetic clade of poorly characterized S51 family proteases from bacteria. We show that these proteins can contribute to a basal level of resistance to an important class of natural antibiotics.


Assuntos
Antibacterianos , Bacteriocinas , Antibacterianos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bacteriocinas/genética , Nucleotídeos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Filogenia
2.
mBio ; 11(2)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265328

RESUMO

The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive.IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.


Assuntos
Antibacterianos/metabolismo , Bacteriocinas/genética , Hidrolases/metabolismo , Família Multigênica , Myxococcales/enzimologia , Myxococcales/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Farmacorresistência Bacteriana , Escherichia coli/genética , Hidrolases/genética , Myxococcales/efeitos dos fármacos , Óperon , Peptídeos/metabolismo , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...