Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 361: 127738, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35940324

RESUMO

The novel and greener approach toward the co-production of hydrolytic enzymes in a single-cultivation medium with inexpensive substrates can bring down the production costs. Likewise, the natural and industrial organic biomass/solid are all nutritionally rich substrates waiting for free use in industries such as food, biofuel, etc. Valorization must broaden its applications in industries and households with a step towards a sustainable environment. The biofuel approach can be projected as one of the most promising deputations to meet future energy demands, in reduction of the environmental pollution due to excessive fossil fuel consumption. The present review highlights the multifaceted stature of microbial enzymes in this direction and possible implications mainly in the food industry and biofuel with the global impact of similar bio-based industries. In this review, design scale-up, fermentation cost, energy needs,and agro-food waste management have been meticulously delineated.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Biocombustíveis , Alimentos , Resíduos Industriais
2.
Appl Biochem Biotechnol ; 193(12): 4113-4150, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34648116

RESUMO

The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.


Assuntos
Cisteína Endopeptidases , Temperatura Alta , Engenharia de Proteínas , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Estabilidade Enzimática/genética , Hidrólise
3.
Appl Microbiol Biotechnol ; 105(13): 5325-5340, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34236482

RESUMO

In the current scenario, considerable attention is being given to the enzyme L-glutaminase (EC 3.5.1.2). It belongs to the amidohydrolase class adherent to the family of serine-reliant ß-lactamases and the penicillin-binding proteins due to its higher affinity to polymerize and modify peptidoglycan synthesis. However, based on the catalytic proficiency, L-glutaminase is characterized as a proteolytic endopeptidase that cleaves peptide linkage and emancipates various byproducts, viz. ammonia along with glutamate. L-glutamine is considered the key amino acid reportedly involved in multiple metabolic pathways such as nitrogen metabolism. The present review is focused on the recent development and aspects concomitant to the biotechnological applicability of L-glutaminase predominantly from the marine habitat. Additionally, a majority of L-glutaminases finds application in cancer therapy as therapeutic agents, especially for acute lymphocytic leukaemia. The in vitro studies have been effective against various human cancer cell lines. L-glutaminase enhances the growth of probiotic bacteria. Apart from all these applications, it is suitably applicable in fermented foods as a flavour enhancer especially the umami flavour and content. Marine habitats have largely been exploited for their bio-catalytic potential but very scarcely for therapeutic enzymes. Some of the reports of such marine bacterial isolates from Bacillus sp., Pseudomonas sp. and Vibrio sp. are in the domain, but none highlights the therapeutic applications predominantly as anticancer and anti-proliferative agents. KEY POINTS: The exploration of marine habitats along the Gujarat coasts mainly for bacteria secreting L-glutaminase is scarcely reported, and even more scarce are the amidohydrolases from these marine niches as compared to their terrestrial counterparts. Microbial sourced amidohydrolase has wide bio-applicability that includes food, cosmetics and therapeutics especially as anticancer/anti-proliferative agent making it of immense biotechnological significance.


Assuntos
Bacillus , Glutaminase , Amidoidrolases , Ecossistema , Glutamina , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...