Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5076, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871721

RESUMO

Although coveted in applications, few materials expand when subject to compression or contract under decompression, i.e., exhibit negative compressibility. A key step to achieve such counterintuitive behaviour is the destabilisations of (meta)stable equilibria of the constituents. Here, we propose a simple strategy to obtain negative compressibility exploiting capillary forces both to precompress the elastic material and to release such precompression by a threshold phenomenon - the reversible formation of a bubble in a hydrophobic flexible cavity. We demonstrate that the solid part of such metastable elastocapillary systems displays negative compressibility across different scales: hydrophobic microporous materials, proteins, and millimetre-sized laminae. This concept is applicable to fields such as porous materials, biomolecules, sensors and may be easily extended to create unexpected material susceptibilities.

2.
J Am Chem Soc ; 146(19): 13236-13246, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701635

RESUMO

Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.

3.
Chem Sci ; 15(6): 2019-2025, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332831

RESUMO

Solid-gas reactions and in situ powder X-ray diffraction investigations of trinuclear silver complexes {[3,4,5-(CF3)3Pz]Ag}3 and {[4-Br-3,5-(CF3)2Pz]Ag}3 supported by highly fluorinated pyrazolates reveal that they undergo intricate ethylene-triggered structural transformations in the solid-state producing dinuclear silver-ethylene adducts. Despite the complexity, the chemistry is reversible producing precursor trimers with the loss of ethylene. Less reactive {[3,5-(CF3)2Pz]Ag}3 under ethylene pressure and low-temperature conditions stops at an unusual silver-ethylene complex in the trinuclear state, which could serve as a model for intermediates likely present in more common trimer-dimer reorganizations described above. Complete structural data of three novel silver-ethylene complexes are presented together with a thorough computational analysis of the mechanism.

4.
J Am Chem Soc ; 146(6): 4001-4012, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291812

RESUMO

Recent computational studies have predicted many new ternary nitrides, revealing synthetic opportunities in this underexplored phase space. However, synthesizing new ternary nitrides is difficult, in part because intermediate and product phases often have high cohesive energies that inhibit diffusion. Here, we report the synthesis of two new phases, calcium zirconium nitride (CaZrN2) and calcium hafnium nitride (CaHfN2), by solid state metathesis reactions between Ca3N2 and MCl4 (M = Zr, Hf). Although the reaction nominally proceeds to the target phases in a 1:1 ratio of the precursors via Ca3N2 + MCl4 → CaMN2 + 2 CaCl2, reactions prepared this way result in Ca-poor materials (CaxM2-xN2, x < 1). A small excess of Ca3N2 (ca. 20 mol %) is needed to yield stoichiometric CaMN2, as confirmed by high-resolution synchrotron powder X-ray diffraction. In situ synchrotron X-ray diffraction studies reveal that nominally stoichiometric reactions produce Zr3+ intermediates early in the reaction pathway, and the excess Ca3N2 is needed to reoxidize Zr3+ intermediates back to the Zr4+ oxidation state of CaZrN2. Analysis of computationally derived chemical potential diagrams rationalizes this synthetic approach and its contrast from the synthesis of MgZrN2. These findings additionally highlight the utility of in situ diffraction studies and computational thermochemistry to provide mechanistic guidance for synthesis.

5.
Nano Lett ; 23(23): 10682-10686, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38033298

RESUMO

Flexible nanoporous materials are of great interest for applications in many fields such as sensors, catalysis, material separation, and energy storage. Of these, metal-organic frameworks (MOFs) are the most explored thus far. However, tuning their flexibility for a particular application remains challenging. In this work, we explore the effect of the exogenous property of crystallite size on the flexibility of the ZIF-8 MOF. By subjecting hydrophobic ZIF-8 to hydrostatic compression with water, the flexibility of its empty framework and the giant negative compressibility it experiences during water intrusion were recorded via in operando synchrotron irradiation. It was observed that as the crystallite size is reduced to the nanoscale, both flexibility and the negative compressibility of the framework are reduced by ∼25% and ∼15%, respectively. These results pave the way for exogenous tuning of flexibility in MOFs without altering their chemistries.

6.
Nat Commun ; 13(1): 2536, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534457

RESUMO

Pressure-induced thermal changes in solids-barocaloric effects-can be used to drive cooling cycles that offer a promising alternative to traditional vapor-compression technologies. Efficient barocaloric cooling requires materials that undergo reversible phase transitions with large entropy changes, high sensitivity to hydrostatic pressure, and minimal hysteresis, the combination of which has been challenging to achieve in existing barocaloric materials. Here, we report a new mechanism for achieving colossal barocaloric effects that leverages the large volume and conformational entropy changes of hydrocarbon order-disorder transitions within the organic bilayers of select two-dimensional metal-halide perovskites. Significantly, we show how the confined nature of these order-disorder phase transitions and the synthetic tunability of layered perovskites can be leveraged to reduce phase transition hysteresis through careful control over the inorganic-organic interface. The combination of ultralow hysteresis and high pressure sensitivity leads to colossal reversible isothermal entropy changes (>200 J kg-1 K-1) at record-low pressures (<300 bar).

7.
J Am Chem Soc ; 143(48): 20090-20094, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34826220

RESUMO

How molecules approach, bind at, and release from catalytic sites is key to heterogeneous catalysis, including for emerging metal-organic framework (MOF)-based catalysts. We use in situ synchrotron X-ray scattering analysis to evaluate the dominant binding sites for reagent and product molecules in the vicinity of catalytic Ni-oxo clusters in NU-1000 with different surface functionalization under conditions approaching those used in catalysis. The locations of the reagent and product molecules within the pores can be linked to the activity for ethylene hydrogenation. For the most active catalyst, ethylene reagent molecules bind close to the catalytic clusters, but only at temperatures approaching experimentally observed onset of catalysis. The ethane product molecules favor a different binding location suggesting that the product is readily released from the active site. An unusual guest-dependence of the framework negative thermal expansion is documented. We hypothesize that reagent and product binding sites reflect the pathway through the MOF to the active site and can be used to identify key factors that impact the catalytic activity.

8.
Angew Chem Int Ed Engl ; 60(52): 27184-27188, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670001

RESUMO

Purification of C2 H4 from an C2 H4 /C2 H6 mixture is one of the most challenging separation processes, which is achieved mainly through energy-intensive, cryogenic distillation in industry. Sustainable, non-distillation methods are highly desired as alternatives. We discovered that the fluorinated bis(pyrazolyl)borate ligand supported copper(I) complex {[(CF3 )2 Bp]Cu}3 has features very desirable in an olefin-paraffin separation material. It binds ethylene exclusively over ethane generating [(CF3 )2 Bp]Cu(C2 H4 ). This molecular compound exhibits extremely high and record ideal adsorbed solution theory (IAST) C2 H4 /C2 H6 gas separation selectivity, affording high purity (>99.5 %) ethylene that can be readily desorbed from separation columns. In-situ PXRD provides a "live" picture of the reversible conversion between [(CF3 )2 Bp]Cu(C2 H4 ) and the ethylene-free sorbent in the solid-state, driven by the presence or removal of C2 H4 . Molecular structures of trinuclear {[(CF3 )2 Bp]Cu}3 and mononuclear [(CF3 )2 Bp]Cu(C2 H4 ) are also presented.

9.
J Am Chem Soc ; 143(31): 12129-12137, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34340311

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) have aroused enormous interest owing to their superior stability, flexible structures, and intriguing functions. Precise control over their crystalline structures, including topological structures, porosity, composition, and conformation, constitutes an important challenge to realize the tailor-made functionalization. In this work, we developed a new Zr-MOF (PCN-625) with a csq topological net, which is similar to that of the well-known PCN-222 and NU-1000. However, the significant difference lies in the conformation of porphyrin rings, which are vertical to the pore surfaces rather than in parallel. The resulting PCN-625 exhibits two types of one-dimensional channels with concrete diameters of 2.03 and 0.43 nm. Furthermore, the vertical porphyrins together with shrunken pore sizes could limit the accessibility of substrates to active centers in the framework. On the basis of the structural characteristics, PCN-625(Fe) can be utilized as an efficient heterogeneous catalyst for the size-selective [4 + 2] hetero-Diels-Alder cycloaddition reaction. Due to its high chemical stability, this catalyst can be repeatedly used over six times. This work demonstrates that Zr-MOFs can serve as tailor-made scaffolds with enhanced flexibility for target-oriented functions.

10.
Inorg Chem ; 60(17): 13000-13010, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34415750

RESUMO

The infiltration of palladium and platinum nanoparticles (NPs) into the mesoporous metal-organic framework (MOF) CYCU-3 through chemical vapor infiltration (CVI) and incipient wetness infiltration (IWI) processes was systematically explored as a means to design novel NP@MOF composite materials for potential hydrogen storage applications. We employed a traditional CVI process and a new ″green″ IWI process using methanol for precursor infiltration and reduction under mild conditions. Transmission electron microscopy-based direct imaging techniques combined with synchrotron-based powder diffraction (SPD), energy-dispersive X-ray spectroscopy, and physisorption analysis reveal that the resulting NP@MOF composites combine key NP and MOF properties. Room temperature hydrogen adsorption capacities of 0.95 and 0.20 mmol/g at 1 bar and 2.9 and 1.8 mmol/g at 100 bar are found for CVI and IWI samples, respectively. Hydrogen spillover and/or physisorption are proposed as the dominating adsorption mechanisms depending on the NP infiltration method. Mechanistic insights were obtained through the crystallographic means using SPD-based difference envelope density analysis, providing previously underexplored details on NP@MOF preparations. Consequently, important host-guest correlations influencing the global hydrogen adsorption properties are discussed, and they demonstrate that employing MOFs as platforms for NPs is an alternative approach to the development of versatile materials for improving current hydrogen storage technologies.

11.
Adv Mater ; 33(35): e2101259, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34292627

RESUMO

Black phosphorus (BP) is a promising anode material in lithium-ion batteries (LIBs) owing to its high electrical conductivity and capacity. However, the huge volume change of BP during cycling induces rapid capacity fading. In addition, the unclear electrochemical mechanism of BP hinders the development of rational designs and preparation of high-performance BP-based anodes. Here, a high-performance nanostructured BP-graphite-carbon nanotubes composite (BP/G/CNTs) synthesized using ball-milling method is reported. The BP/G/CNTs anode delivers a high initial capacity of 1375 mA h g-1 at 0.15 A g-1 and maintains 1031.7 mA h g-1 after 450 cycles. Excellent high-rate performance is demonstrated with a capacity of 508.1 mA h g-1 after 3000 cycles at 2 A g-1 . Moreover, for the first time, direct evidence is provided experimentally to present the electrochemical mechanism of BP anodes with three-step lithiation and delithiation using ex situ X-ray diffraction (XRD), ex situ X-ray absorption spectroscopy (XAS), ex situ X-ray emission spectroscopy, operando XRD, and operando XAS, which reveal the formation of Li3 P7 , LiP, and Li3 P. Furthermore, the study indicates an open-circuit relaxation effect of the electrode with ex situ and operando XAS analyses.

12.
J Am Chem Soc ; 142(49): 20531-20535, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226798

RESUMO

Conductive metal-organic frameworks (c-MOFs) have drawn increasing attention for their outstanding performance in energy-related applications. However, the majority of reported c-MOFs are based on 2D structures. Synthetic strategies for 3D c-MOFs are under-explored, leaving unrealized functionality in both their structures and properties. Herein we report Zn-HAB, a 3D c-MOF comprised of hexaaminobenzene and Zn(II). Zn-HAB is shown to have microporosity with a band gap of approximately 1.68 eV, resulting in a moderate conductivity of 0.86 mS cm-1 and a high Seebeck coefficient of 200 µV K-1 at 300 K. The power factor of 3.44 nW m-1 K-2 constitutes the first report of the thermoelectric properties of an intrinsically conductive 3D MOF.

13.
Chem Commun (Camb) ; 56(88): 13520-13523, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32975275

RESUMO

Benzene and acetonitrile are two of the most commonly used solvents found in almost every chemical laboratory. Titan is one other place in the solar system that has large amounts of these compounds. On Titan, organic molecules are produced in the atmosphere and carried to the surface where they can mineralize. Here, we report the phase diagram of mixtures of acetonitrile and benzene, and provide an account of the structure and composition of the phases. To mimic the environment on Titan more accurately, we tested the stability of the structure under liquid ethane. The results provide new insights into the structure and stability of potential extraterrestrial minerals. In light of Dragonfly, NASA's upcoming mission to Titan, revisiting the fundamental chemistry of the smallest molecules with modern methods and techniques can have significant contributions to this epochal mission and can open new research directions in chemistry.

14.
Angew Chem Int Ed Engl ; 59(47): 21001-21006, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32844553

RESUMO

Purifying alkenes from alkanes requires cryogenic distillation. This consumes energy equivalent to countries of ca. 5 million people. Replacing distillation with adsorption processes would significantly increase energy efficiency. Trade-offs between kinetics, selectivity, capacity, and heat of adsorption have prevented production of an optimal adsorbent. We report adsorbents that overcome these trade-offs. [Cu-Br]3 and [Cu-H]3 are air-stable trinuclear complexes that undergo reversible solid-state inter-molecular rearrangements to produce dinuclear [Cu-Br⋅(alkene)]2 and [Cu-H⋅(alkene)]2 . The reversible solid-state rearrangement, confirmed in situ using powder X-ray diffraction, allows adsorbent design trade-offs to be overcome, coupling low heat of adsorption (-10 to -17 kJ mol-1alkene ), high alkene:alkane selectivity (47; 29), and uptake capacity (>2.5 molalkene mol-1Cu3 ). Most remarkably, [Cu-H]3 displays fast uptake and regenerates capacity within 10 minutes.

15.
Nat Chem ; 12(2): 186-192, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792386

RESUMO

Competitive water adsorption can have a significant impact on metal-organic framework performance properties, ranging from occupying active sites in catalytic reactions to co-adsorbing at the most favourable adsorption sites in gas separation and storage applications. In this study, we investigate, for a metal-organic framework that is stable after moisture exposure, what are the reversible, loading-dependent structural changes that occur during water adsorption. Herein, a combination of in situ synchrotron powder and single-crystal diffraction, infrared spectroscopy and molecular modelling analysis was used to understand the important role of loading-dependent water effects in a water stable metal-organic framework. Through this analysis, insights into changes in crystallographic lattice parameters, water siting information and water-induced defect structure as a response to water loading were obtained. This work shows that, even in stable metal-organic frameworks that maintain their porosity and crystallinity after moisture exposure, important molecular-level structural changes can still occur during water adsorption due to guest-host interactions such as water-induced bond rearrangements.

16.
J Synchrotron Radiat ; 26(Pt 6): 1924-1928, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721735

RESUMO

Calibration of area detectors from powder diffraction standards is widely used at synchrotron beamlines. From a single diffraction image, it is not possible to determine both the sample-to-detector distance and the wavelength, but, with images taken from multiple positions along the beam direction and where the relative displacement is known, the sample-to-detector distance and wavelength can both be determined with good precision. An example calibration using the GSAS-II software package is presented.

17.
J Am Chem Soc ; 140(44): 14533-14537, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30176142

RESUMO

Conductive metal-organic frameworks (c-MOFs) have shown outstanding performance in energy storage and electrocatalysis. Varying the bridging metal species and the coordinating atom are versatile approaches to tune their intrinsic electronic properties in c-MOFs. Herein we report the first synthesis of the oxygen analog of M3(C6X6)2 (X = NH, S) family using Cu(II) and hexahydroxybenzene (HHB), namely Cu-HHB [Cu3(C6O6)2], through a kinetically controlled approach with a competing coordination reagent. We also successfully demonstrate an economical synthetic approach using tetrahydroxyquinone as the starting material. Cu-HHB was found to have a partially eclipsed packing between adjacent 2D layers and a bandgap of approximately 1 eV. The addition of Cu-HHB to the family of synthetically realized M3(C6X6)2 c-MOFs will enable greater understanding of the influence of the organic linkers and metals, and further broadens the range of applications for these materials.

18.
Inorg Chem ; 56(12): 6965-6972, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28557423

RESUMO

This is the first systematic study exploring metal-organic frameworks (MOFs) as platforms for the controlled nanostructuring of molecular magnets. We report the incorporation of seven single-molecule magnets (SMMs) of general composition [Mn12O12(O2CR)16(OH2)4], with R = CF3 (1), (CH3)CCH2 (2), CH2Cl (3), CH2Br (4), CHCl2 (5), CH2But (6), and C6H5 (7), into the hexagonal channel pores of a mesoporous MOF host. The resulting nanostructured composites combine the key SMM properties with the functional properties of the MOF. Synchrotron-based powder diffraction with difference envelope density analysis, physisorption analysis (surface area and pore size distribution), and thermal analyses reveal that the well-ordered hexagonal structure of the host framework is preserved, and magnetic measurements indicate that slow relaxation of the magnetization, characteristic of the corresponding Mn12 derivative guests, occurs inside the MOF pores. Structural host-guest correlations including the bulkiness and polarity of peripheral SMM ligands are discussed as fundamental parameters influencing the global SMM@MOF loading capacities. These results demonstrate that employing MOFs as platforms for the nanostructuration of SMMs is not limited to a particular host-guest system but potentially applicable to a multitude of other molecular magnets. Such fundamental findings will assist in paving the way for the development of novel advanced spintronic devices.

19.
ACS Nano ; 11(2): 2024-2032, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28112896

RESUMO

Here we show that the active portion of a graphitic nanoparticle can be mimicked by a perylene diimide (PDI) to explain the otherwise elusive biological and electrocatalytic activity of the nanoparticle construct. Development of molecular analogues that mimic the antioxidant properties of oxidized graphenes, in this case the poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs), will afford important insights into the highly efficient activity of PEG-HCCs and their graphitic analogues. PEGylated perylene diimides (PEGn-PDI) serve as well-defined molecular analogues of PEG-HCCs and oxidized graphenes in general, and their antioxidant and superoxide dismutase-like (SOD-like) properties were studied. PEGn-PDIs have two reversible reduction peaks, which are more positive than the oxidation peak of superoxide (O2•-). This is similar to the reduction peak of the HCCs. Thus, as with PEG-HCCs, PEGn-PDIs are also strong single-electron oxidants of O2•-. Furthermore, reduced PEGn-PDI, PEGn-PDI•-, in the presence of protons, was shown to reduce O2•- to H2O2 to complete the catalytic cycle in this SOD analogue. The kinetics of the conversion of O2•- to O2 and H2O2 by PEG8-PDI was measured using freeze-trap EPR experiments to provide a turnover number of 133 s-1; the similarity in kinetics further supports that PEG8-PDI is a true SOD mimetic. Finally, PDIs can be used as catalysts in the electrochemical oxygen reduction reaction in water, which proceeds by a two-electron process with the production of H2O2, mimicking graphene oxide nanoparticles that are otherwise difficult to study spectroscopically.


Assuntos
Grafite/química , Imidas/química , Nanopartículas/química , Perileno/análogos & derivados , Superóxido Dismutase/química , Grafite/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Imidas/metabolismo , Estrutura Molecular , Óxidos/química , Óxidos/metabolismo , Perileno/química , Perileno/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Superóxido Dismutase/metabolismo
20.
J Am Chem Soc ; 138(41): 13513-13516, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27696836

RESUMO

The application of atomic layer deposition (ALD) to metal-organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. Complementary density functional calculations indicate that this startling regioselectivity is driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...