Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 35(7): 2827-2834, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063595

RESUMO

Lead halide perovskite (LHP) nanocrystals (NCs) have gathered much attention as light-emitting materials, particularly owing to their excellent color purity, band gap tunability, high photoluminescence quantum yield (PLQY), low cost, and scalable synthesis. To enhance the stability of LHP NCs, bulky strongly bound organic ligands are commonly employed, which counteract the extraction of charge carriers from the NCs and hinder their use as photoconductive materials and photocatalysts. Replacing these ligands with a thin coating is a complex challenge due to the highly dynamic ionic lattice, which is vulnerable to the commonly employed coating precursors and solvents. In this work, we demonstrate thin (<1 nm) metal oxide gel coatings through non-hydrolytic sol-gel reactions. The coated NCs are readily dispersible and highly stable in short-chain alcohols while remaining monodisperse and exhibiting high PLQY (70-90%). We show the successful coating of NCs in a wide range of sizes (5-14 nm) and halide compositions. Alumina-gel-coated NCs were chosen for an in-depth analysis, and the versatility of the approach is demonstrated by employing zirconia- and titania-based coatings. Compact films of the alumina-gel-coated NCs exhibit electronic and excitonic coupling between the NCs, leading to two orders of magnitude longer photoluminescence lifetimes (400-700 ns) compared to NCs in solution or their organically capped counterparts. This makes these NCs highly suited for applications where charge carrier delocalization or extraction is essential for performance.

2.
Nano Lett ; 23(5): 1914-1923, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36852730

RESUMO

The long search for nontoxic alternatives to lead halide perovskites (LHPs) has shown that some compelling properties of LHPs, such as low effective masses of carriers, can only be attained in their closest Sn(II) and Ge(II) analogues, despite their tendency toward oxidation. Judicious choice of chemistry allowed formamidinium tin iodide (FASnI3) to reach a power conversion efficiency of 14.81% in photovoltaic devices. This progress motivated us to develop a synthesis of colloidal FASnI3 NCs with a concentration of Sn(IV) reduced to an insignificant level and to probe their intrinsic structural and optical properties. Intrinsic FASnI3 NCs exhibit unusually low absorption coefficients of 4 × 103 cm-1 at the first excitonic transition, a 190 meV increase of the band gap as compared to the bulk material, and a lack of excitonic resonances. These features are attributed to a highly disordered lattice, distinct from the bulk FASnI3 as supported by structural characterizations and first-principles calculations.

3.
Nat Photonics ; 17(1): 59-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36628352

RESUMO

Extreme miniaturization of infrared spectrometers is critical for their integration into next-generation consumer electronics, wearables and ultrasmall satellites. In the infrared, there is a necessary compromise between high spectral bandwidth and high spectral resolution when miniaturizing dispersive elements, narrow band-pass filters and reconstructive spectrometers. Fourier-transform spectrometers are known for their large bandwidth and high spectral resolution in the infrared; however, they have not been fully miniaturized. Waveguide-based Fourier-transform spectrometers offer a low device footprint, but rely on an external imaging sensor such as bulky and expensive InGaAs cameras. Here we demonstrate a proof-of-concept miniaturized Fourier-transform waveguide spectrometer that incorporates a subwavelength and complementary-metal-oxide-semiconductor-compatible colloidal quantum dot photodetector as a light sensor. The resulting spectrometer exhibits a large spectral bandwidth and moderate spectral resolution of 50 cm-1 at a total active spectrometer volume below 100 µm × 100 µm × 100 µm. This ultracompact spectrometer design allows the integration of optical/analytical measurement instruments into consumer electronics and space devices.

4.
ACS Energy Lett ; 7(10): 3401-3414, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277137

RESUMO

Since the inception of the unprecedented rise of halide perovskites for photovoltaic research, ion migration has shadowed this material class with undesirable hysteresis and degradation effects, limiting its practical implementations. Unfortunately, the localized doping and electrochemical reactions triggered by ion migration cause many more undesirable effects that are often unreported or misinterpreted because they deviate from classical semiconductor behavior. In this Perspective, we provide a concise overview of such effects in halide perovskites, such as operational instability in photovoltaics, polarization-induced abnormal external quantum efficiency in light-emitting diodes, and energy channel shift and anomalous sensitivities in hard radiation detection. Finally, we highlight a unique use case of exploiting ion migration as a boon to design emerging memory technologies such as memristors for information storage and computing.

5.
Adv Mater ; 34(47): e2202390, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36069995

RESUMO

Single-crystal halide perovskites exhibit photogenerated-carriers of high mobility and long lifetime, making them excellent candidates for applications demanding thick semiconductors, such as ionizing radiation detectors, nuclear batteries, and concentrated photovoltaics. However, charge collection depreciates with increasing thickness; therefore, tens to hundreds of volts of external bias is required to extract charges from a thick perovskite layer, leading to a considerable amount of dark current and fast degradation of perovskite absorbers. However, extending the carrier-diffusion length can mitigate many of the anticipated issues preventing the practical utilization of perovskites in the abovementioned applications. Here, single-crystal perovskite solar cells that are up to 400 times thicker than state-of-the-art perovskite polycrystalline films are fabricated, yet retain high charge-collection efficiency in the absence of an external bias. Cells with thicknesses of 110, 214, and 290 µm display power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7%, respectively. The remarkable persistence of high PCEs, despite the increase in thickness, is a result of a long electron-diffusion length in those cells, which was estimated, from the thickness-dependent short-circuit current, to be ≈0.45 mm under 1 sun illumination. These results pave the way for adapting perovskite devices to optoelectronic applications in which a thick active layer is essential.

6.
ACS Energy Lett ; 6(12): 4365-4373, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34917771

RESUMO

Fast neutron imaging is a nondestructive technique for large-scale objects such as nuclear fuel rods. However, present detectors are based on conventional phosphors (typically microcrystalline ZnS:Cu) that have intrinsic drawbacks, including light scattering, γ-ray sensitivity, and afterglow. Fast neutron imaging with colloidal nanocrystals (NCs) was demonstrated to eliminate light scattering. While lead halide perovskite (LHP) FAPbBr3 NCs emitting brightly showed poor spatial resolution due to reabsorption, the Mn2+-doped CsPb(BrCl)3 NCs with oleyl ligands had higher resolution because of large apparent Stokes shift but insufficient concentration for high light yield. In this work, we demonstrate a NC scintillator that features simultaneously high quantum yields, high concentrations, and a large apparent Stokes shift. In particular, we use long-chain zwitterionic ligand capping in the synthesis of Mn2+-doped CsPb(BrCl)3 NCs that allows for attaining very high concentrations (>100 mg/mL) of colloids. The emissive behavior of these ASC18-capped NCs was carefully controlled by compositional tuning that permitted us to select for high quantum yields (>50%) coinciding with Mn-dominated emission for minimal self-absorption. These tailored Mn2+:CsPb(BrCl)3 NCs demonstrated over 8 times brighter light yield than their oleyl-capped variants under fast neutron irradiation, which is competitive with that of near-unity FAPbBr3 NCs, while essentially eliminating self-absorption. Because of their rare combination of concentrations above 100 mg/mL and high quantum yields, along with minimal self-absorption for good spatial resolution, Mn2+:CsPb(BrCl)3 NCs have the potential to displace ZnS:Cu as the leading scintillator for fast neutron imaging.

7.
ACS Photonics ; 8(11): 3357-3364, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820475

RESUMO

The fast neutron imaging technique with recoil proton detection harbors significant potential for imaging of thick, large-scale objects containing high-Z elements. However, the challenge to find efficient fast neutron scintillators with high spatial resolution is ongoing. The list of requirements for such scintillators is long and demanding: a proton-rich, scattering-free material combining high light yield with the absence of light reabsorption. To meet these challenges, we look for a suitable material among a rising class of 0D organic-inorganic Pb(II) halide hybrids. The use of large organic cations, e.g., trihexyltetradecylphosphonium, results in room-temperature ionic liquids that combine highly Stokes-shifted (up to 1.7 eV), reabsorption-free, and efficient emission (photoluminescence quantum yield up to 60%) from molecularly small and dense (PbX2 molar fraction up to 0.33) emitting centers. We investigate the optical properties of the resulting ionic liquids and showcase their utility as fast neutron imaging scintillators. Concomitantly with good light yield, such fast-neutron scintillators exhibit both higher spatial resolution and lower γ-ray sensitivity compared with commercial ZnS:Cu-based screens.

8.
Chem Mater ; 33(7): 2408-2419, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33867666

RESUMO

Mixed-valent metal-halides containing ns2 lone pairs may exhibit intense visible absorption, while zero-dimensional (0D) ns2-based metal-chlorides are generally colorless but have demonstrated promising optoelectronic properties suitable for thermometry and radiation detection. Here, we report solvothermally synthesized mixed-valent 0D metal-halides Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 ≤ x ≤ 7). Rb23SbIII 7SbV 2Cl54 crystallizes in an orthorhombic space group (Cmcm) with a unique, layered 0D structure driven by the arrangement of the 5s2 lone pairs of the SbIIICl6 octahedra. This red material is likely the true structure of a previously reported monoclinic "Rb2.67SbCl6" phase, the structure of which was not determined. Partially or fully substituting SbIII with isoelectronic BiIII yields the series Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 < x ≤ 7), which exhibits a similar layered 0D structure but with additional disorder that yields a trigonal crystal system with an enantiomorphic space group (R32). Second harmonic generation of 532 nm light from a 1064 nm laser using Rb23BiIII 7SbV 2Cl54 powder confirms the noncentrosymmetry of this space group. As with the prototypical mixed-valent pnictogen halides, the visible absorption bands of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family are the result of intervalent SbIII-SbV and mixed-valent BiIII-SbV charge transfer bands (CTB), with a blueshift of the absorption edge as BiIII substitution increases. No PL is observed from this family of semiconductors, but a crystal of Rb23BiIII 7SbV 2Cl54 exhibits a high resistivity of 1.0 × 1010 Ω·cm and X-ray photoconductivity with a promising µτ product of 8.0 × 10-5 cm2 s-1 V-1. The unique 0D layered structures of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family highlight the versatility of the ns2 lone pair in semiconducting metal-halides, pointing the way toward new functional 0D metal-halide compounds.

9.
Sci Technol Adv Mater ; 22(1): 194-204, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33907525

RESUMO

Shortwave infrared (SWIR) optical sensing and imaging are essential to an increasing number of next-generation applications in communications, process control or medical imaging. An all-organic SWIR upconversion device (OUC) consists of an organic SWIR sensitive photodetector (PD) and an organic light-emitting diode (OLED), connected in series. OUCs directly convert SWIR to visible photons, which potentially provides a low-cost alternative to the current inorganic compound-based SWIR imaging technology. For OUC applications, only few organic materials have been reported with peak absorption past 1000 nm and simultaneous small absorption in the visible. Here, we synthesized a series of thermally stable high-extinction coefficient donor-substituted benz[cd]indole-capped SWIR squaraine dyes. First, we coupled the phenyl-, carbazole-, and thienyl-substituted benz[cd]indoles with squaric acid (to obtain the SQ dye family). We then combined these donors with the dicyanomethylene-substituted squaraine acceptor unit, to obtain the dicyanomethylene-functionalized squaraine DCSQ family. In the solid state, the absorbance of all dyes extended considerably beyond 1100 nm. For the carbazole- and thienyl-substituted DCSQ dyes, even the peak absorptions in solution were in the SWIR, at 1008 nm and 1014 nm. We fabricated DCSQ PDs with an external photon-to-current efficiency over 30%. We then combined the PD with a fluorescent OLED and fabricated long-term stable OUCs with peak sensitivity at 1020 nm, extending to beyond 1200 nm. Our OUCs are characterized by a very low dark luminance (<10-2 cd m-2 at below 6 V) in the absence of SWIR light, and a low turn-on voltage of 2 V when SWIR light is present.

10.
Adv Sci (Weinh) ; 8(6): 2003360, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747735

RESUMO

Infrared light detection enables diverse technologies ranging from night vision to gas analysis. Emerging technologies such as low-cost cameras for self-driving cars require highly sensitive, low-cost photodetector cameras with spectral sensitivities up to wavelengths of 10 µm. For this purpose, colloidal quantum dot (QD) graphene phototransistors offer a viable alternative to traditional technologies owing to inexpensive synthesis and processing of QDs. However, the spectral range of QD/graphene phototransistors is thus far limited to 1.6 µm. Here, HgTe QD/graphene phototransistors with spectral sensitivity up to 3 µm are presented, with specific detectivities of 6 × 108 Jones at a wavelength of 2.5 µm and a temperature of 80 K. Even at kHz light modulation frequencies, specific detectivities exceed 108 Jones making them suitable for fast video imaging. The simple device architecture and QD film patterning in combination with a broad spectral sensitivity manifest an important step toward low-cost, multi-color infrared cameras.

11.
Adv Sci (Weinh) ; 8(4): 1903080, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643780

RESUMO

Supramolecular assemblies from organic dyes forming J-aggregates are known to exhibit narrowband photoluminescence with full-width at half maximum of ≈9 nm (260 cm-1). Applications of these high color purity emitters, however, are hampered by the rather low photoluminescence quantum yields reported for cyanine J-aggregates, even when formed in solution. Here, it is demonstrated that cyanine J-aggregates can reach an order of magnitude higher photoluminescence quantum yield (increase from 5% to 60%) in blend solutions of water and alkylamines at room temperature. By means of time-resolved photoluminescence studies, an increase in the exciton lifetime as a result of the suppression of non-radiative processes is shown. Small-angle neutron scattering studies suggest a necessary condition for the formation of such highly emissive J-aggregates: the presence of a sharp water/amine interface for J-aggregate assembly and the coexistence of nanoscale-sized water and amine domains to restrict the J-aggregate size and solubilize monomers, respectively.

12.
Nat Commun ; 12(1): 981, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579913

RESUMO

Traditional fluorescence-based tags, used for anticounterfeiting, rely on primitive pattern matching and visual identification; additional covert security features such as fluorescent lifetime or pattern masking are advantageous if fraud is to be deterred. Herein, we present an electrohydrodynamically printed unicolour multi-fluorescent-lifetime security tag system composed of lifetime-tunable lead-halide perovskite nanocrystals that can be deciphered with both existing time-correlated single-photon counting fluorescence-lifetime imaging microscopy and a novel time-of-flight prototype. We find that unicolour or matching emission wavelength materials can be prepared through cation-engineering with the partial substitution of formamidinium for ethylenediammonium to generate "hollow" formamidinium lead bromide perovskite nanocrystals; these materials can be successfully printed into fluorescence-lifetime-encoded-quick-read tags that are protected from conventional readers. Furthermore, we also demonstrate that a portable, cost-effective time-of-flight fluorescence-lifetime imaging prototype can also decipher these codes. A single comprehensive approach combining these innovations may be eventually deployed to protect both producers and consumers.

13.
Adv Mater ; 33(9): e2007355, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33480450

RESUMO

Luminescent organic-inorganic low-dimensional ns2 metal halides are of rising interest as thermographic phosphors. The intrinsic nature of the excitonic self-trapping provides for reliable temperature sensing due to the existence of a temperature range, typically 50-100 K wide, in which the luminescence lifetimes (and quantum yields) are steeply temperature-dependent. This sensitivity range can be adjusted from cryogenic temperatures to above room temperature by structural engineering, thus enabling diverse thermometric and thermographic applications ranging from protein crystallography to diagnostics in microelectronics. Owing to the stable oxidation state of Sb3+ , Sb(III)-based halides are far more attractive than all major non-heavy-metal alternatives (Sn-, Ge-, Bi-based halides). In this work, the relationship between the luminescence characteristics and crystal structure and microstructure of TPP2 SbBr5 (TPP = tetraphenylphosphonium) is established, and then its potential is showcased as environmentally stable and robust phosphor for remote thermography. The material is easily processable into thin films, which is highly beneficial for high-spatial-resolution remote thermography. In particular, a compelling combination of high spatial resolution (1 µm) and high thermometric precision (high specific sensitivities of 0.03-0.04 K-1 ) is demonstrated by fluorescence-lifetime imaging of a heated resistive pattern on a flat substrate, covered with a solution-spun film of TPP2 SbBr5 .

14.
ACS Appl Mater Interfaces ; 13(1): 848-856, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33350310

RESUMO

Colloidal PbS quantum dot (QD)/graphene hybrid photodetectors are emerging QD technologies for affordable infrared light detectors. By interfacing the QDs with graphene, the photosignal of these detectors is amplified, leading to high responsivity values. While these detectors have been mainly operated at room temperature, low-temperature operation is required for extending their spectral sensitivity beyond a wavelength of 3 µm. Here, we unveil the temperature-dependent response of PbS QD/graphene phototransistors by performing steady-state and time-dependent measurements over a large temperature range of 80-300 K. We find that the temperature dependence of photoinduced charge carrier transfer from the QD layer to graphene is (i) not impeded by freeze-out of the (Schottky-like) potential barrier at low temperatures, (ii) tremendously sensitive to QD surface states (surface oxidation), and (iii) minimally affected by the ligand exposure time and QD layer thickness. Moreover, the specific detectivity of our detectors increases with cooling, with a maximum measured specific detectivity of at least 1010 Jones at a wavelength of 1280 nm and a temperature of 80 K, which is an order of magnitude larger compared to the corresponding room temperature value. The temperature- and gate voltage-dependent characterization presented here constitutes an important step in expanding our knowledge of charge transfer at interfaces of low-dimensional materials and toward the realization of next-generation optoelectronic devices.

15.
ACS Mater Lett ; 2(7): 845-852, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32954358

RESUMO

Halides of ns2 metal ions have recently regained broad research interest as bright narrowband and broadband emitters. Sb(III) is particularly appealing for its oxidative stability (compared to Ge2+ and Sn2+) and low toxicity (compared to Pb2+). Square pyramidal SbX5 anion had thus far been the most common structural motif for realizing high luminescence efficiency, typically when cocrystallized with an organic cation. Luminescent hybrid organic-inorganic halides with octahedral coordination of Sb(III) remain understudied, whereas fully inorganic compounds show very limited structural engineerability. We show that the host-guest complexation of alkali metal cations with crown ethers fosters the formation of zero-dimensional Sb(III) halides and allows for adjusting the coordination number (5 or 6). The obtained compounds exhibit bright photoluminescence with quantum yields of up to 89% originating from self-trapped excitons, with emission energies, Stokes shifts, and luminescence lifetimes finely-adjustable by structural engineering. A combination of environmental stability and strong, intrinsic temperature-dependence of the luminescence lifetimes in the nanosecond-to-microsecond range nominate these compounds as highly potent luminophores for remote thermometry and thermography owing to their sensitivity range of 200-450 K and high specific sensitivities of 0.04 °C-1.

16.
ACS Nano ; 14(11): 14686-14697, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32897688

RESUMO

Fast neutrons offer high penetration capabilities for both light and dense materials due to their comparatively low interaction cross sections, making them ideal for the imaging of large-scale objects such as large fossils or as-built plane turbines, for which X-rays or thermal neutrons do not provide sufficient penetration. However, inefficient fast neutron detection limits widespread application of this technique. Traditional phosphors such as ZnS:Cu embedded in plastics are utilized as scintillators in recoil proton detectors for fast neutron imaging. However, these scintillation plates exhibit significant light scattering due to the plastic-phosphor interface along with long-lived afterglow (on the order of minutes), and therefore alternative solutions are needed to increase the availability of this technique. Here, we utilize colloidal nanocrystals (NCs) in hydrogen-dense solvents for fast neutron imaging through the detection of recoil protons generated by neutron scattering, demonstrating the efficacy of nanomaterials as scintillators in this detection scheme. The light yield, spatial resolution, and neutron-vs-gamma sensitivity of several chalcogenide (CdSe and CuInS2)-based and perovskite halide-based NCs are determined, with only a short-lived afterglow (below the order of seconds) observed for all of these NCs. FAPbBr3 NCs exhibit the brightest total light output at 19.3% of the commercial ZnS:Cu(PP) standard, while CsPbBrCl2:Mn NCs offer the best spatial resolution at ∼2.6 mm. Colloidal NCs showed significantly lower gamma sensitivity than ZnS:Cu; for example, 79% of the FAPbBr3 light yield results from neutron-induced radioluminescence and hence the neutron-specific light yield of FAPbBr3 is 30.4% of that of ZnS:Cu(PP). Concentration and thickness-dependent measurements highlight the importance of increasing concentrations and reducing self-absorption, yielding design principles to optimize and foster an era of NC-based scintillators for fast neutron imaging.

17.
Chem Mater ; 32(12): 5118-5124, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32595266

RESUMO

The vast structural and compositional space of metal halides has recently become a major research focus for designing inexpensive and versatile light sources; in particular, for applications in displays, solid-state lighting, lasing, etc. Compounds with isolated ns2-metal halide centers often exhibit bright broadband emission that stems from self-trapped excitons (STEs). The Sb(III) halides are attractive STE emitters due to their low toxicity and oxidative stability; however, coupling these features with an appropriately robust, fully inorganic material containing Sb3+ in an octahedral halide environment has proven to be a challenge. Here, we investigate Sb3+ as a dopant in a solution-grown metal halide double perovskite (DP) matrix, namely Cs2MInCl6:xSb (M = Na, K, x = 0-100%). Cs2KInCl6 is found to crystallize in the tetragonal DP phase, unlike Cs2NaInCl6 that adopts the traditional cubic DP structure. This structural difference results in distinct emission colors, as Cs2NaInCl6:xSb and Cs2KInCl6:xSb compounds exhibit broadband blue and green emissions, respectively, with photoluminescence quantum yields (PLQYs) of up to 93%. Spectroscopic and computational investigations confirm that this efficient emission originates from Sb(III)-hosted STEs. These fully inorganic DP compounds demonstrate that Sb(III) can be incorporated as a bright emissive center for stable lighting applications.

18.
Angew Chem Int Ed Engl ; 59(34): 14490-14497, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32472624

RESUMO

Low-dimensional ns2 -metal halide compounds have received immense attention for applications in solid-state lighting, optical thermometry and thermography, and scintillation. However, these are based primarily on the combination of organic cations with toxic Pb2+ or unstable Sn2+ , and a stable inorganic luminescent material has yet to be found. Here, the zero-dimensional Rb7 Sb3 Cl16 phase, comprised of isolated [SbCl6 ]3- octahedra and edge-sharing [Sb2 Cl10 ]4- dimers, shows room-temperature photoluminescence (RT PL) centered at 560 nm with a quantum yield of 3.8±0.2 % at 296 K (99.4 % at 77 K). The temperature-dependent PL lifetime rivals that of previous low-dimensional materials with a specific temperature sensitivity above 0.06 K-1 at RT, making it an excellent thermometric material. Utilizing both DFT and chemical substitution with Bi3+ in the Rb7 Bi3-3x Sb3x Cl16 (x≤1) family, we present the edge-shared [Sb2 Cl10 ]4- dimer as a design principle for Sb-based luminescent materials.

19.
J Am Chem Soc ; 142(1): 373-381, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31814392

RESUMO

Organic light-emitting diodes (OLEDs) are revolutionizing display applications. In this aspect, luminescent complexes of precious metals such as iridium, platinum, or ruthenium still playing a significant role. Emissive compounds of earth-abundant copper with equivalent performance are desired for practical, large-scale applications such as solid-state lighting and displays. Copper(I)-based emitters are well-known to suffer from weak spin-orbit coupling and a high reorganization energy upon photoexcitation. Here we report a cationic organo-copper cluster [Cu4(PCP)3]+ (PCP = 2,6-(PPh2)2C6H3) that features suppressed nonradiative decays, giving rise to a robust narrow-band green luminophore with a photoluminescent (PL) efficiency up to 93%. PL decay kinetics corroborated by DFT calculations reveal a complex emission mechanism involving contributions of both thermally activated delayed fluorescence and phosphorescence. This robust compound was solution-processed into a thin film in prototype OLEDs with external quantum efficiency up to 11% and a narrow emission bandwidth (65 nm fwhm).

20.
ACS Nano ; 13(12): 13899-13909, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31769648

RESUMO

Semiconductor nanoplatelets (NPLs) have emerged as a very promising class of colloidal nanocrystals for light-emitting devices owing to their quantum-well-like electronic and optical characteristics. However, their lower photoluminescence quantum yield (PLQY) and limited stability have hampered the realization of their outstanding luminescent properties in device applications. Here, to address these deficiencies, we present a two-step synthetic approach that enables the synthesis of core/shell NPLs with precisely controlled shell composition for engineering their excitonic properties. The proposed CdSe colloidal quantum wells possess a graded shell, which is composed of a CdS buffer layer and a CdxZn1-xS gradient layer, and exhibit bright emission (PLQY 75-89%) in the red spectral region (634-648 nm) with a narrow emission line width (21 nm). These enhanced optical properties allowed us to attain low thresholds for amplified spontaneous emission (down to ∼40 µJ/cm2) under nanosecond laser excitation. We also studied the electroluminescent performance of these NPLs by fabricating solution-processed light-emitting diodes (LEDs). In comparison to NPL-LEDs with CdSe/CdS core/shell NPLs, which exhibit an external quantum efficiency (EQE) value of only 1.80%, a significantly improved EQE value of 9.92% was obtained using graded-shell NPLs, the highest value for colloidal NPL-based-LEDs. In addition, the low efficiency roll-off characteristics of NPL-LEDs enabled a high brightness of up to ∼46 000 cd/m2 with an electroluminescence peak centered at 650 nm. These findings demonstrate the paramount role that heterostructure engineering occupies in enhancing the optoelectronic characteristics of semiconductor NPLs toward practically relevant levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...