Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 79(9): 3799-808, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24713063

RESUMO

Excited states of benzo[b]quinolizinium (BQ) derivatives that show efficient pH-responsive fluorescence switching properties were studied quantum-chemically by employing the CASSCF/CASPT2 and TD-DFT methods. Protonation of aminophenyl-BQ at the electron-donor amine moiety converts the nitrogen lone pair into a σ bond and the HOMO into a lower-lying orbital that is no longer involved in the excitation, thereby rationalizing the suppression of the charge transfer. An S1-T1 seam between the vertically excited Franck-Condon (FC) point and the S1 equilibrium geometry favors intersystem crossing (ISC). The T1 state of the protonated form remains well below S1 (1.5 eV) because of favorable exchange interactions, whereas the T1 state of the unprotonated form does not experience any analogous stabilization because of the difference in the spatial domains of the singly occupied orbitals in the S1 and T1 states. The S1 surface from the FC point until the equilibrium geometry for the protonated species is energetically downhill. Calculations on models and available experimental data suggest design principles for similarly functioning pH-responsive species, namely, an amine lone pair as the electron donor and a cationic ring of moderate size as the electron acceptor that are structurally separated by virtue of a spacer.


Assuntos
Teoria Quântica , Quinolizinas/química , Estrutura Molecular
2.
Artigo em Inglês | MEDLINE | ID: mdl-23369725

RESUMO

A new amine containing selenium and their five imine, (SeSchX)(X: -H, F, Cl, Br, CH3), and Ni (II) complexes, [Ni(SeSchX)(H2O)2]Cl/[Ni(SeSchCl)(H2O)Cl], were synthesized. The compounds were characterized by means of elemental analyses, (13)C and (1)H NMR (for imine), FT-IR, UV-Visible spectroscopy, TGA/DTA and elemental analyses. [Ni(SeSchCl)(H2O)Cl] complex from Ni(II) complexes changes color from yellow to orange in the range pH 5-7. [Ni(SeSchCl)(H2O)Cl] complex has ligand-to-metal charge-transfer (LMCT) transitions in the basic medium. Excitation characteristics and energetic of [Ni(SeSchCl)(H2O)Cl] complex, examined via TD-DFT calculations, reveals transitions of LMCT and π→π(*) character that matches the experimental values. [Ni(SeSchCl)(H2O)Cl] complex showed the highest antibacterial activity when compared to other complexes reported in this work.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Níquel/química , Níquel/farmacologia , Aminas/química , Aminas/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Selênio/química , Selênio/farmacologia , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...