Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891462

RESUMO

Polyamide-imide (PAI) is an exceptional polymer known for its outstanding mechanical, chemical, and thermal resistance. This makes it an ideal choice for applications that require excellent durability, such as those in the aerospace sector, bearings, gears, and the oil and gas industry. The current study explores the optimization of TORLON® 4000 T HV polyamide-imide nanofibers utilizing needleless electrospinning devices, ranging from laboratory-scale to industrial-scale production, for the first time. The PAI polymer has been dispersed in several solvent systems at varying concentrations. The diameter of the electrospun PAI nanofibers ranged from 65.8 nanometers to 1.52 µm. Their filtering efficiency was above 90% for particles with a size of 0.3 microns. The TGA results proved that PAI nanofibers have excellent resistance to high temperatures up to 450 °C. The PAI nanofibers are ideal for hot air intake filtration and fire-fighter personal protection equipment applications.

2.
Polymers (Basel) ; 16(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932071

RESUMO

A novel approach was proposed, utilizing an electrical field and X-ray irradiation to oxidize elemental mercury (Hg0) and encapsulate it within a nanofibrous mat made of Polyamide 6/Chitosan. The X-rays contributed significantly to the conversion of Hg0 into Hg+ by producing electrons through the photoionization of gas molecules. The positive and negative pole electrodes generated an electric field that exerted a magnetic force, resulting in the redirection of oxidized elemental mercury towards the negative pole electrode, which was coupled with a Polyamide 6/Chitosan nanofiber mat. The evaluation of the Polyamide 6/Chitosan nanofibers exposed to oxidized mercury showed that the mercury, found in the steam of a specially designed filtration device, was captured in two different forms. Firstly, it was chemically bonded with concentrations ranging from 0.2 to 10 ng of Hg in total. Secondly, it was retained on the surface of the Polyamide 6/Chitosan nanofibers with a concentration of 10 microg/m3 of Hg per minute. Nevertheless, a concentration of 10 microg/m3 of mercury is considered significant, given that the emission levels of mercury from each coal power plant typically vary from approximately 4.72 to 44.07 microg/m3. Thus, this research presents a viable approach to reducing mercury emissions from coal-fired power plants, which could result in lower operational expenses and less secondary environmental effects.

3.
Membranes (Basel) ; 12(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36295688

RESUMO

Cardiovascular disease is anticipated to remain the leading cause of death globally. Due to the current problems connected with using autologous arteries for bypass surgery, researchers are developing tissue-engineered vascular grafts (TEVGs). The major goal of vascular tissue engineering is to construct prostheses that closely resemble native blood vessels in terms of morphological, mechanical, and biological features so that these scaffolds can satisfy the functional requirements of the native tissue. In this setting, morphology and cellular investigation are usually prioritized, while mechanical qualities are generally addressed superficially. However, producing grafts with good mechanical properties similar to native vessels is crucial for enhancing the clinical performance of vascular grafts, exposing physiological forces, and preventing graft failure caused by intimal hyperplasia, thrombosis, aneurysm, blood leakage, and occlusion. The scaffold's design and composition play a significant role in determining its mechanical characteristics, including suturability, compliance, tensile strength, burst pressure, and blood permeability. Electrospun prostheses offer various models that can be customized to resemble the extracellular matrix. This review aims to provide a comprehensive and comparative review of recent studies on the mechanical properties of fibrous vascular grafts, emphasizing the influence of structural parameters on mechanical behavior. Additionally, this review provides an overview of permeability and cell growth in electrospun membranes for vascular grafts. This work intends to shed light on the design parameters required to maintain the mechanical stability of vascular grafts placed in the body to produce a temporary backbone and to be biodegraded when necessary, allowing an autologous vessel to take its place.

4.
J Nanosci Nanotechnol ; 13(7): 4672-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901489

RESUMO

The electric current was measured during needle-, rod- and roller electrospinning. The influence of the needle diameter, flow rate, protrusion needle length, and relative humidity on the current was studied using various polymer solutions. The results of Bhattacharjee et al. were confirmed in the experiments with polyethylene oxide solutions. Electrospinning from a droplet of a polymer solution placed on a steel rod confirmed the expected direct proportionality between the number of jets and the current. By measuring the current and the polymer throughput during roller electrospinning while simultaneously recording the process on a camera, the following process characteristics were found: the number of jets per spinning surface area, throughput per jet, total current, current per jet, and distance between Taylor cones on the surface of the spinning roller.


Assuntos
Cristalização/instrumentação , Cristalização/métodos , Eletroquímica/instrumentação , Eletroquímica/métodos , Nanopartículas/química , Agulhas , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...