Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0275532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327270

RESUMO

In this paper, we propose a portmanteau test for whether a graph-structured network dataset without replicates exhibits autocorrelation across units connected by edges. Specifically, the well known Ljung-Box test for serial autocorrelation of time series data is generalized to the network setting using a specially derived central limit theorem for a weakly stationary random field. The asymptotic distribution of the test statistic under the null hypothesis of no autocorrelation is shown to be chi-squared, yielding a simple and easy-to-implement procedure for testing graph-structured autocorrelation, including spatial and spatial-temporal autocorrelation as special cases. Numerical simulations are carried out to demonstrate and confirm the derived asymptotic results. Convergence is found to occur quickly depending on the number of lags included in the test statistic, and a significant increase in statistical power is also observed relative to some recently proposed permutation tests. An example application is presented by fitting spatial autoregressive models to the distribution of COVID-19 cases across counties in New York state.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Análise Espacial , Fatores de Tempo , New York
2.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772810

RESUMO

We generalize Taylor's law for the variance of light-tailed distributions to many sample statistics of heavy-tailed distributions with tail index α in (0, 1), which have infinite mean. We show that, as the sample size increases, the sample upper and lower semivariances, the sample higher moments, the skewness, and the kurtosis of a random sample from such a law increase asymptotically in direct proportion to a power of the sample mean. Specifically, the lower sample semivariance asymptotically scales in proportion to the sample mean raised to the power 2, while the upper sample semivariance asymptotically scales in proportion to the sample mean raised to the power [Formula: see text] The local upper sample semivariance (counting only observations that exceed the sample mean) asymptotically scales in proportion to the sample mean raised to the power [Formula: see text] These and additional scaling laws characterize the asymptotic behavior of commonly used measures of the risk-adjusted performance of investments, such as the Sortino ratio, the Sharpe ratio, the Omega index, the upside potential ratio, and the Farinelli-Tibiletti ratio, when returns follow a heavy-tailed nonnegative distribution. Such power-law scaling relationships are known in ecology as Taylor's law and in physics as fluctuation scaling. We find the asymptotic distribution and moments of the number of observations exceeding the sample mean. We propose estimators of α based on these scaling laws and the number of observations exceeding the sample mean and compare these estimators with some prior estimators of α.

3.
PLoS One ; 15(12): e0243123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33290420

RESUMO

In this article, we study the applicability of Benford's law and Zipf's law to national COVID-19 case figures with the aim of establishing guidelines upon which methods of fraud detection in epidemiology, based on formal statistical analysis, can be developed. Moreover, these approaches may also be used in evaluating the performance of public health surveillance systems. We provide theoretical arguments for why the empirical laws should hold in the early stages of an epidemic, along with preliminary empirical evidence in support of these claims. Based on data published by the World Health Organization and various national governments, we find empirical evidence that suggests that both Benford's law and Zipf's law largely hold across countries, and deviations can be readily explained. To the best of our knowledge, this paper is among the first to present a practical application of Zipf's law to fraud detection.


Assuntos
COVID-19/epidemiologia , Pandemias/estatística & dados numéricos , Humanos , Modelos Teóricos , Reprodutibilidade dos Testes , SARS-CoV-2/patogenicidade
4.
Ann Stat ; 46(5): 2125-2152, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479456

RESUMO

We study the nonparametric estimation of a decreasing density function g 0 in a general s-sample biased sampling model with weight (or bias) functions wi for i = 1, …, s. The determination of the monotone maximum likelihood estimator gn and its asymptotic distribution, except for the case when s = 1, has been long missing in the literature due to certain non-standard structures of the likelihood function, such as non-separability and a lack of strictly positive second order derivatives of the negative of the log-likelihood function. The existence, uniqueness, self-characterization, consistency of gn and its asymptotic distribution at a fixed point are established in this article. To overcome the barriers caused by non-standard likelihood structures, for instance, we show the tightness of gn via a purely analytic argument instead of an intrinsic geometric one and propose an indirect approach to attain the n -rate of convergence of the linear functional ∫ wi gn.

5.
J R Stat Soc Series B Stat Methodol ; 78(3): 673-700, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27346982

RESUMO

The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...