Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 85(3): 703-713, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33624778

RESUMO

In larviculture facilities, rotifers are generally used as an initial food source, while a proper size of live feeds to connect rotifer and Artemia associated with fish larval growth is needed. The improper management of feed size and density induces mass mortality and abnormal development of fish larvae. To improve the survival and growth of target larvae, this study applied carbon and argon heavy-ion-beam irradiation in mutation breeding to select rotifer mutants with larger lorica sizes. The optimal irradiation conditions of heavy-ion beam were determined with lethality, reproductivity, mutant frequency, and morphometric characteristics. Among 56 large mutants, TYC78, TYC176, and TYA41 also showed active population growth. In conclusion, (1) heavy-ion-beam irradiation was defined as an efficient tool for mutagenesis of rotifers and (2) the aforementioned 3 lines that have larger lorica length and active population growth may be used as a countermeasure of live feed size gap during fish larviculcure.


Assuntos
Íons Pesados , Rotíferos/efeitos da radiação , Ração Animal , Animais , Aquicultura , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Mutação , Radiação Ionizante , Rotíferos/genética , Rotíferos/crescimento & desenvolvimento , Rotíferos/fisiologia
2.
Plant J ; 92(6): 1020-1030, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29024116

RESUMO

Heavy-ion irradiation is a powerful mutagen that possesses high linear energy transfer (LET). Several studies have indicated that the value of LET affects DNA lesion formation in several ways, including the efficiency and the density of double-stranded break induction along the particle path. We assumed that the mutation type can be altered by selecting an appropriate LET value. Here, we quantitatively demonstrate differences in the mutation type induced by irradiation with two representative ions, Ar ions (LET: 290 keV µm-1 ) and C ions (LET: 30.0 keV µm-1 ), by whole-genome resequencing of the Arabidopsis mutants produced by these irradiations. Ar ions caused chromosomal rearrangements or large deletions (≥100 bp) more frequently than C ions, with 10.2 and 2.3 per mutant genome under Ar- and C-ion irradiation, respectively. Conversely, C ions induced more single-base substitutions and small indels (<100 bp) than Ar ions, with 28.1 and 56.9 per mutant genome under Ar- and C-ion irradiation, respectively. Moreover, the rearrangements induced by Ar-ion irradiation were more complex than those induced by C-ion irradiation, and tended to accompany single base substitutions or small indels located close by. In conjunction with the detection of causative genes through high-throughput sequencing, selective irradiation by beams with different effects will be a powerful tool for forward genetics as well as studies on chromosomal rearrangements.


Assuntos
Arabidopsis/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Íons Pesados , Transferência Linear de Energia/efeitos da radiação , Arabidopsis/genética , Arabidopsis/fisiologia , Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese , Mutação , Radiação Ionizante , Análise de Sequência de DNA , Deleção de Sequência/efeitos da radiação
3.
Genes Genet Syst ; 91(4): 229-233, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-27452041

RESUMO

Detection of mutations at the whole-genome level is now possible by the use of high-throughput sequencing. However, determining mutations is a time-consuming process due to the number of false positives provided by mutation-detecting programs. AMAP (automated mutation analysis pipeline) was developed to overcome this issue. AMAP integrates a set of well-validated programs for mapping (BWA), removal of potential PCR duplicates (Picard), realignment (GATK) and detection of mutations (SAMtools, GATK, Pindel, BreakDancer and CNVnator). Thus, all types of mutations such as base substitution, deletion, insertion, translocation and chromosomal rearrangement can be detected by AMAP. In addition, AMAP automatically distinguishes false positives by comparing lists of candidate mutations in sequenced mutants. We tested AMAP by inputting already analyzed read data derived from three individual Arabidopsis thaliana mutants and confirmed that all true mutations were included in the list of candidate mutations. The result showed that the number of false positives was reduced to 12% of that obtained in a previous analysis that lacked a process of reducing false positives. Thus, AMAP will accelerate not only the analysis of mutation induction by individual mutagens but also the process of forward genetics.


Assuntos
Arabidopsis/genética , Biologia Computacional/métodos , Análise Mutacional de DNA/métodos , Algoritmos , Automação Laboratorial , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...