Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 14(19): 1251-1255, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36537280

RESUMO

Approximately 280 people from pharmaceutical industries, contractors, academic institutions and regulatory authorities attended the 13th Japan Bioanalysis Forum Symposium. The symposium was held via web to prevent the spread of COVID-19 from the 28 February to 2 March 2022. The theme of the symposium was 'All for One Goal', and the event has provided an opportunity for open discussion among researchers with different backgrounds but who share a common goal: "to deliver more effective and safe pharmaceuticals to patients as quickly as possible". The speakers focused on hot topics in bioanalysis, including chromatography, biomarker analysis, cell and gene therapy, COVID-19 and antidrug antibody. This symposium provided a great opportunity for the participants to have meaningful discussions, even though 'on the web' was a limited space.


Assuntos
COVID-19 , Humanos , Japão , Anticorpos , Indústria Farmacêutica
2.
J Toxicol Pathol ; 35(2): 135-147, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35516841

RESUMO

Artificial intelligence (AI)-based image analysis is increasingly being used for preclinical safety-assessment studies in the pharmaceutical industry. In this paper, we present an AI-based solution for preclinical toxicology studies. We trained a set of algorithms to learn and quantify multiple typical histopathological findings in whole slide images (WSIs) of the livers of young Sprague Dawley rats by using a U-Net-based deep learning network. The trained algorithms were validated using 255 liver WSIs to detect, classify, and quantify seven types of histopathological findings (including vacuolation, bile duct hyperplasia, and single-cell necrosis) in the liver. The algorithms showed consistently good performance in detecting abnormal areas. Approximately 75% of all specimens could be classified as true positive or true negative. In general, findings with clear boundaries with the surrounding normal structures, such as vacuolation and single-cell necrosis, were accurately detected with high statistical scores. The results of quantitative analyses and classification of the diagnosis based on the threshold values between "no findings" and "abnormal findings" correlated well with diagnoses made by professional pathologists. However, the scores for findings ambiguous boundaries, such as hepatocellular hypertrophy, were poor. These results suggest that deep learning-based algorithms can detect, classify, and quantify multiple findings simultaneously on rat liver WSIs. Thus, it can be a useful supportive tool for a histopathological evaluation, especially for primary screening in rat toxicity studies.

3.
J Toxicol Sci ; 45(5): 245-260, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32404557

RESUMO

Some patients encounter hepatotoxicity after repeated acetaminophen (APAP) dosing even at therapeutic doses. In the present study, we focused on the diabetic state as one of the suggested risk factors of drug-induced liver injury in humans and investigated the contribution of accelerated gluconeogenesis to the susceptibility to APAP-induced hepatotoxicity using an animal model of type 2 diabetes patients. Sprague-Dawley (SD) rats and spontaneously diabetic torii (SDT) rats were each given APAP at 0 mg/kg, 300 and 500 mg/kg for 35 days by oral gavage. Plasma and urinary glutathione-related metabolites, liver function parameters, and hepatic glutathione levels were compared between the non-APAP-treated SDT and SD rats and between the APAP-treated SDT and SD rats. Hepatic function parameters were not increased at either dose level in the APAP-treated SD rats, but were increased at both dose levels in the APAP-treated SDT rats. Increases in hepatic glutathione levels attributable to the treatment of APAP were noted only in the APAP-treated SD rats. There were differences in the profiles of plasma and urinary glutathione-related metabolites between the non-APAP-treated SD and SDT rats and the plasma/urinary endogenous metabolite profile after treatment with APAP in the SDT rats indicated that hepatic glutathione synthesis was decreased due to accelerated gluconeogenesis. In conclusion, SDT rats were more sensitive to APAP-induced chronic hepatotoxicity than SD rats and the high susceptibility of SDT rats was considered to be attributable to lowered hepatic glutathione levels induced by accelerated gluconeogenesis.


Assuntos
Acetaminofen/efeitos adversos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Diabetes Mellitus Tipo 2/complicações , Fígado/efeitos dos fármacos , Acetaminofen/administração & dosagem , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Gluconeogênese/fisiologia , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Ratos Sprague-Dawley , Fatores de Risco
4.
Chemosphere ; 252: 126530, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32224358

RESUMO

Aromatic amines are a class of chemical carcinogens that are activated by cytochrome P450 enzymes to form arylhydroxylamines that are conjugated to form N-acetoxyarylamines or N-sulfonyloxyarylamines. These conjugates undergo N-O bond cleavage to become reactive nitrenium ions that may form DNA adducts. Numerous studies in the past using N-acetoxyarylamines to investigate DNA adduct formation were conducted, however, less is known in regard to DNA adduct formation directly from arylhydroxylamines - especially under conditions that mimic the physiological conditions of cells such as weakly basic conditions. In this study, 2'-deoxyguanosine (dG) was exposed to N-(2,6-dimethylphenyl)hydroxylamine (2,6-DMPHA) and N-phenylhydroxylamine (PHA) at pH 7.4 without enzymes and analyzed by liquid chromatography high resolution mass spectrometry (LC-HRMS). 2,6-DMPHA exposure resulted in the production of relatively low amounts of adducts however the identities of at least six different adducts that were formed through reactions with carbon, nitrogen and oxygen of 2'-deoxyguanosine were proposed based upon different analytical approaches including HRMS CID fragmentation and NMR analyses. Contrastively, PHA exposure under identical conditions resulted in one adduct at the C8 position. It was concluded from these results and results of theoretical calculations that nitrenium ions produced from 2,6-DMPHA were relatively more stable resulting in longer nitrenium ion lifetimes which ultimately led to greater potential for 2,6-DMPHA nitrenium ions to react with multiple sites on dG.


Assuntos
Desoxiguanosina/metabolismo , Carcinógenos/análise , Cromatografia Líquida , Adutos de DNA , Dano ao DNA , Hidroxilamina/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
5.
J Toxicol Sci ; 44(11): 759-776, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708533

RESUMO

In order to estimate the potential risk of chemicals including drug in patients with type 2 diabetes mellitus (T2DM), we investigated allyl alcohol induced liver injury using SD rats and Spontaneously Diabetic Torii-Leprfa (SDT fatty) rats as a model for human T2DM. The diabetic state is one of the risk factors for chemically induced liver injury because of lower levels of glutathione for detoxification by conjugation with chemicals and environmental pollutants and their reactive metabolites. Allyl alcohol is metabolized to a highly reactive unsaturated aldehyde, acrolein, which is detoxified by conjugation with glutathione. Therefore, we used allyl alcohol as a model compound. Our investigations showed that SDT fatty rats appropriately mimic the diabetic state in humans. The profiles of glucose metabolism, hepatic function tests and glutathione synthesis in the SDT fatty rats were similar to those in patients with T2DM. Five-week oral dosing with allyl alcohol to the SDT fatty rats revealed that the allyl alcohol induced liver injury was markedly enhanced in the SDT fatty rats when compared with the SD rats and the difference was considered to be due to lower hepatic detoxification of acrolein, the reactive metabolite of allyl alcohol, by depleted hepatic glutathione synthesis. Taking all the results of the present study into consideration, the potential for allyl alcohol to induce liver injury is considered to be higher in diabetic patients than in healthy humans.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Diabetes Mellitus Tipo 2 , Propanóis/toxicidade , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Sprague-Dawley , Risco
6.
Chem Res Toxicol ; 32(9): 1760-1771, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31430133

RESUMO

Quinones may be formed metabolically or abiotically from environmental pollutants and polycyclic aromatic hydrocarbons (PAHs); many are recognized as toxicological intermediates that cause a variety of deleterious cellular effects including mutagenicity. The PAH-o-quinone, 1,2-naphthoquinone (1,2-NQ), may exert its genotoxic effects through interactions with cellular nucleophiles such as DNA, however, the mechanisms of 1,2-NQ adduct formation are still under investigation. With the aim to further understand these mechanisms, the chemical structures of adducts formed from the reaction of 2'-deoxyguanosine (dG) with 1,2-NQ under physiological conditions were investigated by liquid chromatography electrospray ionization tandem mass spectrometry and 1H NMR analyses. Results showed that 1,2-NQ underwent non-enzymatic oxidation to form a 1,2-NQ-epoxide which in turn formed at least four bulky adducts with dG, and these adducts were more likely to be formed under physiological conditions. A mechanism was proposed whereby hydration of 1,2-NQ to form unstable naphthohydroquinones and 2-hydroxy-1,4-naphthoquinone resulted in formation of hydrogen peroxide that oxidized 1,2-NQ. These results suggest that the genotoxicity of 1,2-NQ may not only be caused through oxidative DNA damage and adduct formation through Michael addition but also through non-enzymatic oxidative transformation of 1,2-NQ itself to form an intermediate PAH-epoxide which covalently binds to DNA.


Assuntos
Adutos de DNA/síntese química , DNA/química , Compostos de Epóxi/síntese química , Mutagênicos/química , Naftoquinonas/química , Dano ao DNA/efeitos dos fármacos , Desoxiguanosina/química , Peróxido de Hidrogênio/química , Oxirredução
7.
RSC Adv ; 9(7): 3726-3733, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35518117

RESUMO

In this study, platelet-type carbon nanofibers prepared by the liquid phase carbonization of polymers in the pores of a porous anodic alumina template were used to prepare the Co3O4/carbon electrocatalysts. For comparison, Co3O4 nanoparticles were also deposited on multiwall carbon nanotubes (MWCNTs). Both the nitrogen-free platelet-type carbon nanofibers (pCNFs) and the nitrogen-containing analogue (N-pCNFs) exhibited better dispersion and higher amount of deposited Co3O4 nanoparticles compared to the MWCNTs. In addition, many individual Co3O4 nanoparticles were deposited separately on pCNF and N-pCNF, whereas aggregated deposition was commonplace on MWCNTs. The results indicated that the side wall of the pCNFs, which consisted of carbon edge planes, was the preferential nucleation site of Co3O4 nanoparticles rather than the basal planes of carbon that predominated the surface of the MWCNTs. The oxygen reduction reaction (ORR) activity of the Co3O4/pCNF composite in 0.1 mol dm-3 KOH solution was better than that of Co3O4/MWCNTs. The N-pCNF further enhanced the ORR activity of the Co3O4/pCNFs even though the dispersion and supported amount of Co3O4 nanoparticles were negligibly affected by the presence of the nitrogen species. Synergistic interactions of the Co3O4 nanoparticles with N-doped CNFs contributed to the increased ORR activity.

8.
J Appl Toxicol ; 37(8): 943-953, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28138993

RESUMO

Lipid profiling has emerged as an effective approach to not only screen disease and drug toxicity biomarkers but also understand their underlying mechanisms of action. Tamoxifen, a widely used antiestrogenic agent for adjuvant therapy against estrogen-positive breast cancer, possesses side effects such as hepatic steatosis and phospholipidosis (PLD). In the present study, we administered tamoxifen to Sprague-Dawley rats and used lipidomics to reveal tamoxifen-induced alteration of the hepatic lipid profile and its association with the plasma lipid profile. Treatment with tamoxifen for 28 days caused hepatic PLD in rats. We compared the plasma and liver lipid profiles in treated vs. untreated rats using a multivariate analysis to determine differences between the two groups. In total, 25 plasma and 45 liver lipids were identified and altered in the tamoxifen-treated group. Of these lipids, arachidonic acid (AA)-containing phosphatidylcholines (PCs), such as PC (17:0/20:4) and PC (18:1/20:4), were commonly reduced in both plasma and liver. Conversely, tamoxifen increased other phosphoglycerolipids in the liver, such as phosphatidylethanolamine (18:1/18:1) and phosphatidylinositol (18:0/18:2). We also examined alteration of AA-containing PCs and some phosphoglycerolipids in the pre-PLD stage and found that these lipid alterations were initiated before pathological alteration in the liver. In addition, changes in plasma and liver levels of AA-containing PCs were linearly associated. Moreover, levels of free AA and mRNA levels of AA-synthesizing enzymes, such as fatty acid desaturase 1 and 2, were decreased by tamoxifen treatment. Therefore, our study demonstrated that AA-containing PCs might have potential utility as novel and predictive biomarkers for tamoxifen-induced PLD. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Ácido Araquidônico/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Lipidoses/metabolismo , Fígado/metabolismo , Fosfatidilcolinas/sangue , Tamoxifeno/toxicidade , Animais , Ácido Araquidônico/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidoses/induzido quimicamente , Fígado/efeitos dos fármacos , Masculino , Fosfatidilcolinas/metabolismo , Ratos Sprague-Dawley
9.
J Toxicol Sci ; 37(5): 911-29, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23038001

RESUMO

Acetaminophen (APAP) is a commonly used and effective analgesic and antipyretic agent. However, some patients encounter hepatotoxicity after repeated APAP dosing at therapeutic doses. In the present study, we focused on the nutritional state as one of the risk factors of APAP-induced chronic hepatotoxicity in humans and investigated the contribution of undernourishment to susceptibility to APAP-induced chronic hepatotoxicity using an animal model mimicking undernourished patients. Rats were divided into 2 groups: the ad libitum fed (ALF) and the restricted fed (RF) rats and were assigned to 3 groups (n = 8/group) for each feeding condition. The animals were given APAP at 0, 300 and 500mg/kg for 99 days under each feeding condition. Plasma and urinary glutathione-related metabolites and liver function parameters were measured during the dosing period and hepatic glutathione levels were measured at the end of the dosing period. In the APAP-treated ALF rats hepatic glutathione levels were increased and hepatic function parameters were not changed, but in the APAP-treated RF rats hepatic glutathione levels were decreased at 500mg/kg and hepatic function parameters were increased at 300 and 500mg/kg. Moreover the urinary endogenous metabolite profile after long-term treatment with APAP in the ALF and RF rats was similar to that in human non-responders and responders to APAP-induced chronic hepatotoxicity, respectively. In conclusion, the RF rats were more sensitive to APAP-induced chronic hepatotoxicity than the ALF rats and were considered to be a useful model to estimate the contribution of the nutritional state of patients to APAP-induced chronic hepatotoxicity.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Antipiréticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estado Nutricional , Acetaminofen/sangue , Acetaminofen/farmacocinética , Alanina Transaminase/sangue , Analgésicos não Narcóticos/sangue , Analgésicos não Narcóticos/farmacocinética , Animais , Antipiréticos/sangue , Antipiréticos/farmacocinética , Glicemia/análise , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Creatina/urina , Creatinina/sangue , Creatinina/urina , Dieta , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Ácido Láctico/sangue , Masculino , Desnutrição/metabolismo , Ácido Pirúvico/sangue , Ratos , Fatores de Risco , Taurina/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...