Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 131(15): 3705-15, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15229183

RESUMO

Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomain-type transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a co-receptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.


Assuntos
Axônios/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas com Homeodomínio LIM , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/genética , Neurônios Aferentes/citologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Filogenia , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/anatomia & histologia
2.
Mech Dev ; 121(4): 315-24, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15110042

RESUMO

In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching.


Assuntos
Axônios/metabolismo , Glicoproteínas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Genes Reporter , Glicoproteínas/genética , Proteínas com Homeodomínio LIM , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão , Gânglio Trigeminal/metabolismo , Peixe-Zebra/metabolismo
3.
Dev Dyn ; 226(1): 107-11, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12508231

RESUMO

The novel mammalian gene Crim1 encodes a transmembrane bound protein with similarity to the secreted bone morphogenetic protein (BMP) antagonists, vertebrate Chordin, and its Drosophila homologue short gastrulation. Crim1 is expressed in the neural tube in mouse in a restricted pattern, but its function in central nervous system development is largely unknown. We isolated the chicken Crim1 orthologue and analyzed its expression in the developing neural tube. Chicken CRIM1 shares strong homology to human/mouse CRIM1 and C. elegans CRIM1-like proteins. Crim1 is expressed in a similar but not identical pattern to that in the developing spinal cord of mouse, including the notochord, floor plate, motor neurons, and the roof plate. Unlike follistatin, a secreted inhibitor of BMPs, in ovo electroporation of CRIM1, as a full-length transmembrane bound or secreted ectodomain was not sufficient to disrupt early patterning of the neural tube. However, ectodomain CRIM1 overexpression leads to an approximate 50% decrease in populations of specific ventral neuronal populations, including ISL-1(+) motor neurons, CHX-10(+) V1, and EN-1(+) V2 interneurons.


Assuntos
Proteínas de Membrana , Proteínas Nucleares/química , Proteínas , Medula Espinal/embriologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas , Caenorhabditis elegans , Sistema Nervoso Central/embriologia , Embrião de Galinha , Clonagem Molecular , Eletroporação , Humanos , Imuno-Histoquímica , Camundongos , Neurônios Motores/citologia , Crista Neural/embriologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína
4.
Dev Biol ; 249(1): 30-43, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12217316

RESUMO

Members of the GATA transcription factor gene family have been implicated in a variety of developmental processes, including that of the vertebrate central nervous system. However, the role of GATA proteins in spinal cord development remains unresolved. In this study, we investigated the expression and function of two GATA proteins, GATA2 and GATA3, in the developing chick spinal cord. We show that both proteins are expressed by a distinct subpopulation of ventral interneurons that share the same dorsoventral position as CHX10-positive V2 interneurons. However, no coexpression is observed between the two GATA proteins and CHX10. By in vivo notochord grafting and cyclopamine treatment, we demonstrate that the spatially restricted pattern of GATA3 expression is regulated, at least in part, by the signaling molecule Sonic hedgehog. In addition, we further show that Sonic hedgehog induces GATA3 expression in a dose-dependent manner. Using in ovo electroporations, we also demonstrate that GATA2 is upstream of GATA3 in the same epigenetic cascade and that GATA3 is capable of inducing GATA2 expression in vivo. Furthermore, the ectopically expressed GATA proteins can repress differentiation of other ventral cell fates, but not the development of progenitor populations identified by PAX protein expression. Taken together, our findings strongly suggest an important role for GATA2 and GATA3 proteins in the establishment of a distinct ventral interneuron subpopulation in the developing chick spinal cord.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interneurônios/classificação , Medula Espinal/embriologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Embrião de Galinha , Indução Embrionária , Proteínas do Olho , Fator de Transcrição GATA2 , Fator de Transcrição GATA3 , Proteínas Hedgehog , Proteínas de Homeodomínio/metabolismo , Interneurônios/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Fator de Transcrição PAX6 , Fator de Transcrição PAX7 , Fatores de Transcrição Box Pareados , Proteínas Repressoras , Medula Espinal/citologia , Medula Espinal/metabolismo , Células-Tronco/metabolismo , Transplantes
5.
Int J Dev Biol ; 46(4): 385-91, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12141424

RESUMO

The vertebrate Slit gene family currently consists of three members; Slit1, Slit2 and Slit3. Each gene encodes a protein containing multiple epidermal growth factor and leucine rich repeat motifs, which are likely to have importance in cell-cell interactions. In this study, we sought to fully define and characterise the vertebrate Slit gene family. Using long distance PCR coupled with in silico mapping, we determined the genomic structure of all three Slit genes in mouse and man. Analysis of EST and genomic databases revealed no evidence of further Slit family members in either organism. All three Slit genes were encoded by 36 (Slit3) or 37 (Slit1 and Slit2) exons covering at least 143 kb or 183 kb of mouse or human genomic DNA respectively. Two additional potential leucine-rich repeat encoding exons were identified within intron 12 of Slit2. These could be inserted in frame, suggesting that alternate splicing may occur in Slit2. A search for STS sequences within human Slit3 anchored this gene to D5S2075 at the 5' end (exon 4) and SGC32449 within the 3' UTR, suggesting that Slit3 may cover greater than 693 kb. The genomic structure of all Slit genes demonstrated considerable modularity in the placement of exon-intron boundaries such that individual leucine-rich repeat motifs were encoded by individual 72 bp exons. This further implies the potential generation of multiple Slit protein isoforms varying in their number of repeat units. cDNA library screening and EST database searching verified that such alternate splicing does occur.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Cromossomos Humanos Par 5 , DNA Complementar/metabolismo , Éxons , Etiquetas de Sequências Expressas , Biblioteca Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Íntrons , Leucina/metabolismo , Proteínas de Membrana/biossíntese , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Isoformas de Proteínas , Homologia de Sequência de Aminoácidos
6.
Int J Dev Biol ; 46(4): 597-608, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12141448

RESUMO

We review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord. Recent studies have suggested that two classes of homeodomain proteins are induced by threshold concentrations of Sonic hedgehog. Reciprocal inhibition between the two classes acts to convert the continuous gradient of Sonic hedgehog into defined domains of transcription factor expression. However, a number of aspects of ventral spinal cord patterning remain to be elucidated. Some issues currently under investigation involve temporal aspects of Shh-signalling, the role of other signals in ventral patterning and the characterisation of ventral interneurons. In this review, we discuss the current state of knowledge of these issues and present some preliminary studies aimed at furthering understanding of these processes in spinal cord patterning.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Medula Espinal/embriologia , Medula Espinal/fisiologia , Transativadores/metabolismo , Transativadores/fisiologia , Animais , Embrião de Galinha , Proteínas Hedgehog , Modelos Biológicos , Neurônios/patologia , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica
7.
Dev Dyn ; 224(2): 231-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12112475

RESUMO

The differentiation of neural progenitors into the many classes of neurons that exist in the mature spinal cord is a process that relies heavily on the activation of precise combinations of transcription factors. Defining these transcription factor combinations is an important aspect of research in developmental neurobiology that promises to provide incredible insights into the structure, function, and pathology of the central nervous system. The present study aimed to investigate a possible role for the Stem Cell Leukemia (SCL) gene, a basic helix-loop-helix (bHLH) transcription factor gene, in the specification of a population of neural cells in the ventral neural tube. Section RNA in situ hybridisation revealed that SCL is transiently expressed within the V2 postmitotic domain of the developing mouse spinal cord between 10.5 and 13.5 days post coitum. Double-immunofluorescence experiments were subsequently carried out to directly compare the expression of SCL with other V2-specific markers at the cellular level. These experiments revealed that SCL is expressed in a medially restricted subpopulation of GATA-3 producing cells, suggesting a possible role for this factor in the differentiation of the GATA population of V2 interneurons.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Medula Espinal/embriologia , Transativadores/biossíntese , Fatores de Transcrição/biossíntese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/genética , Imunofluorescência , Fator de Transcrição GATA3 , Hibridização In Situ , Camundongos , Microscopia de Fluorescência , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , RNA/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...