Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14636, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670023

RESUMO

Collective decision-making plays a crucial role in information and communication systems. However, decision conflicts among agents often impede the maximization of potential utilities within the system. Quantum processes have shown promise in achieving conflict-free joint decisions between two agents through the entanglement of photons or the quantum interference of orbital angular momentum (OAM). Nonetheless, previous studies have shown symmetric resultant joint decisions, which, while preserving equality, fail to address disparities. In light of global challenges such as ethics and equity, it is imperative for decision-making systems to not only maintain existing equality but also address and resolve disparities. In this study, we investigate asymmetric collective decision-making theoretically and numerically using quantum interference of photons carrying OAM or entangled photons. We successfully demonstrate the realization of asymmetry; however, it should be noted that a certain degree of photon loss is inevitable in the proposed models. We also provide an analytical formulation for determining the available range of asymmetry and describe a method for obtaining the desired degree of asymmetry.

2.
Entropy (Basel) ; 25(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37372187

RESUMO

Quantum walks (QWs) have a property that classical random walks (RWs) do not possess-the coexistence of linear spreading and localization-and this property is utilized to implement various kinds of applications. This paper proposes RW- and QW-based algorithms for multi-armed-bandit (MAB) problems. We show that, under some settings, the QW-based model realizes higher performance than the corresponding RW-based one by associating the two operations that make MAB problems difficult-exploration and exploitation-with these two behaviors of QWs.

3.
Chaos ; 33(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37097964

RESUMO

Multiscale entropy (MSE) has been widely used to examine nonlinear systems involving multiple time scales, such as biological and economic systems. Conversely, Allan variance has been used to evaluate the stability of oscillators, such as clocks and lasers, ranging from short to long time scales. Although these two statistical measures were developed independently for different purposes in different fields, their interest lies in examining the multiscale temporal structures of physical phenomena under study. We demonstrate that from an information-theoretical perspective, they share some foundations and exhibit similar tendencies. We experimentally confirmed that similar properties of the MSE and Allan variance can be observed in low-frequency fluctuations (LFF) in chaotic lasers and physiological heartbeat data. Furthermore, we calculated the condition under which this consistency between the MSE and Allan variance exists, which is related to certain conditional probabilities. Heuristically, natural physical systems including the aforementioned LFF and heartbeat data mostly satisfy this condition, and hence, the MSE and Allan variance demonstrate similar properties. As a counterexample, we demonstrate an artificially constructed random sequence, for which the MSE and Allan variance exhibit different trends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...