Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39202810

RESUMO

The rheological properties of a polyamide (PA) resin with low crystallinity were modified by melt-mixing it with a small amount of an alternative α-olefin-maleic anhydride copolymer as a reactive compound. Because PA has a low melting point, rheological characterization was performed over a wide temperature range. Owing to the reaction between PA and the alternative α-olefin-maleic anhydride copolymer, the blend sample behaved as a long-chain branched polymer in the molten state. The thermo-rheological complexity was obvious owing to large flow activation energy values in the low modulus region, i.e., the rheological time-temperature superposition principle was not applicable. The primary normal stress difference under steady shear was greatly increased in the wide shear rate range, leading to a large swell ratio at the capillary extrusion. Furthermore, strain hardening in the transient elongational viscosity, which is responsible for favorable processability, was clear. Because this is a simple modification method, it will be widely employed to modify the rheological properties of various polyamide resins.

2.
Mol Biochem Parasitol ; 225: 7-14, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30130566

RESUMO

Alveolar echinococcosis (AE) is a zoonotic parasitosis caused by larvae of the fox tapeworm, Echinococcus multilocularis. E. multilocularis is distributed widely in the Northern hemisphere, causing serious health problems in various animals and humans. E. multilocularis, like other cestodes, lacks a digestive tract and absorbs essential nutrients, including glucose, across the syncytial tegument on its external surface. Therefore, it is hypothesized that E. multilocularis uses glucose transporters on its surface similar to a closely-related species, Taenia solium. Based on this hypothesis, we cloned and characterized glucose transporter homologues from E. multilocularis. As a result, we obtained full-length sequences of 2 putative glucose transporter genes (EmGLUT1 and EmGLUT2) from E. multilocularis. In silico analysis predicted that these were classified in the solute carrier family 2 group. Functional expression analysis using Xenopus oocytes demonstrated clear uptake of 2-deoxy-D-glucose (2-DG) by EmGLUT1, but not by EmGLUT2 in this experimental system. EmGLUT1 was shown to have relatively high glucose transport activity. Further analyses using the Xenopus oocyte system revealed that 2-DG uptake of EmGLUT1 did not depend on the presence or concentration of Na+ nor H+, respectively. Immunoblot analyses using cultured metacestode, ex vivo protoscolex, and adult worm samples demonstrated that both EmGLUTs were stably expressed during each developmental stage of the parasite. Based on the above-mentioned findings, we conclude that EmGLUT1 is a simple facilitated glucose transporter and possibly plays an important role in glucose uptake by E. multilocularis throughout its life cycle.


Assuntos
Desoxiglucose/metabolismo , Echinococcus multilocularis/enzimologia , Echinococcus multilocularis/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Animais , Clonagem Molecular , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/classificação , Immunoblotting , Oócitos , Análise de Sequência de DNA , Especificidade por Substrato , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA