Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(24): 6392-6397, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38860919

RESUMO

Using electron spin resonance (ESR) spectroscopy, we investigated the effects of the addition of tin (Sn) powder to perovskite layers on band bending at the perovskite surface near poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole-transport layers in perovskite solar cells (PSCs) involving formamidinium (FA)-methylammonium (MA)-mixed-cation I-Br-mixed-halide tin perovskites. We performed dark ESR spectroscopy measurements of a PEDOT:PSS/FA0.75MA0.25Sn(I0.75Br0.25)3 stack and of a PEDOT:PSS/Sn-powder-added FA0.75MA0.25Sn(I0.75Br0.25)3 stack. The results indicate that FA0.75MA0.25Sn(I0.75Br0.25)3 layers have significant downward band bending near PEDOT:PSS layers. Such downward band bending is unfavorable for hole selectivity and surface passivation at the interface. However, the addition of Sn powder to the tin perovskite precursor solution was found to significantly prevent the downward band bending and rather cause upward band bending, which can improve the hole selectivity and field-effect passivation quality. This can be due to prevented oxidation of perovskite layers by Sn powder addition. These findings are crucial for developing highly efficient and stable tin perovskite solar cells.

2.
ACS Appl Mater Interfaces ; 15(50): 58539-58547, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055892

RESUMO

Organic-inorganic hybrid perovskite solar cells have attracted much attention as important next-generation solar cells. Their solar cell performance is known to change during operation, but the root cause of the instability remains unclear. This report describes an investigation using electron spin resonance (ESR) to evaluate an improvement mechanism for the open-circuit voltage, VOC, of inverted perovskite solar cells at the initial stage of device operation. The ESR study revealed electron transfer at the interface from the perovskite layer to the hole-transport layer not only under dark conditions but also under light irradiation, where electrons are subsequently trapped in the hole-transport layer. An electron barrier is enhanced at the perovskite/hole-transport-layer interface, improving field-effect passivation at the interface. Thereby, the interface recombination velocity is reduced, and thus the VOC improves. These findings are crucially important for elucidating the mechanisms of device performance changes under operation. They reveal a relation between charge transfer and performance improvement, which is valuable for the further development of efficient perovskite solar cells.

3.
ACS Omega ; 7(41): 36277-36285, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278074

RESUMO

For SiO2 layers underneath the SiN x antireflection/passivation layers of front-emitter p-type c-Si solar cells, this paper presents an investigation into their effects on polarization-type potential-induced degradation (PID), in addition to a comparison of polarization-type PID behavior in front-emitter p-type c-Si cells and front-emitter n-type c-Si cells. After PID tests with a bias of +1000 V, p-type c-Si cells without SiO2 layers underneath the SiN x layers showed no degradation, although p-type c-Si cells with approx. 10 nm thick SiO2 layers showed polarization-type PID, which is characterized by a reduction of the short-circuit current density and the open-circuit voltage. This result implies that highly insulating layers such as SiO2 layers play an important role in the occurrence of polarization-type PID. Comparison of polarization-type PID in p-type and n-type c-Si cells with SiO2 layers indicated that degradation in the n-type cells is greater and saturates in a shorter time than in the p-type cells. This result is consistent with an earlier proposed model based on the assumption that polarization-type PID is caused by charge accumulation at K centers in SiN x layers. The findings described herein are crucially important for elucidating polarization-type PID and verifying the degradation model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...