Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(3): e0213579, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921357

RESUMO

In this report we demonstrate the effect of a novel electron emission-based cell culture device on the proliferation and differentiation of pre-osteoblastic MC3T3-E1 cells. Our device has an electron emission element that allows, for the first time, stable emission of electrons into an atmosphere. Atmospheric electrons react with gas molecules to generate radicals and negative ions, which induce a variety of biochemical reactions in the attached cell culture system. In this study, we demonstrated the effect of this new electron emission-based cell culture device on cell proliferation and differentiation using pre-osteoblastic MC3T3-E1 cells. Electron emission stimulation (EES) was applied directly to culture medium containing plated cells, after which the number of living cells, the mRNA levels of osteogenesis-related genes, and the alkaline phosphatase (ALP) activity were evaluated. The growth rate of EES-exposed cells increased by approximately 20% in comparison with unexposed control cells. We also found the mRNA levels of osteogenic specific genes such as collagen type I α-1, core-binding factor α-1, and osteocalcin to be up-regulated following EES. ALP activity, a marker for osteogenic activity, was significantly enhanced in EES-treated cells. Furthermore, reactive oxygen species generated by EES were measured to determine their effect on MC3T3-E1 cells. These results suggest that our new electron emission-based cell culture device, while providing a relatively weak stimulus in comparison with atmospheric plasma systems, promotes cell proliferation and differentiation. This system is expected to find application in regenerative medicine, specifically in relation to bone regeneration.


Assuntos
Antígenos de Diferenciação/biossíntese , Técnicas de Cultura de Células/instrumentação , Proliferação de Células , Osteoblastos/metabolismo , Osteogênese , Gases em Plasma/química , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Camundongos , Osteoblastos/citologia , Espécies Reativas de Oxigênio/metabolismo
2.
Asia Ocean J Nucl Med Biol ; 4(2): 66-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27408894

RESUMO

OBJECTIVES: Use of a positron emission tomography (PET)/single-photon emission computed tomography (SPECT) system facilitates the simultaneous acquisition of images with fluorine-18 fluorodeoxyglucose ((18)F-FDG) and technetium ((99m)Tc)-tetrofosmin. However, (18)F has a short half-life, and 511 keV Compton-scattered photons are detected in the (99m)Tc energy window. Therefore, in this study, we aimed to investigate the consequences of these facts. METHODS: The crosstalk correction for images in the (99m)Tc energy window involved the dual energy window (DEW) subtraction method. In phantom studies, changes in the count of uniform parts in a phantom (due to attenuation from decay), signal detectability in the hot-rod part of the phantom, and the defect contrast ratio in a cardiac phantom were examined. RESULTS: For (18)F-FDG in the step-and-shoot mode, nearly a 9% difference was observed in the count of projection data between the start and end positions of acquisition in the uniform part of the phantom. Based on the findings, the detectability of 12 mm hot rods was relatively poor. In the continuous acquisition mode, the count difference was corrected, and detectability of the hot rods was improved. The crosstalk from (18)F to the (99m)Tc energy window was approximately 13%. In the cardiac phantom, the defect contrast in (99m)Tc images from simultaneous dual-radionuclide acquisition was improved by approximately 9% after DEW correction; the contrast after correction was similar to acquisition with (99m)Tc alone. CONCLUSION: Based on the findings, the continuous mode is useful for (18)F-FDG acquisition, and DEW crosstalk correction is necessary for (99m)Tc-tetrofosmin imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...