Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012261

RESUMO

To investigate the structure of the interface between polyethylene films and substrates, the neutron reflectivity (NR) of deuterated polyethylene (dPE) thin films deposited on Si substrates was measured, demonstrating water accumulation at the interface, even under ambient conditions. After leaching the thermally annealed dPE films in hot p-xylene, NR measurements were conducted on the layers remaining on the substrate, clearly revealing that the adsorption layer of dPE grew during annealing and consisted of two layers, an inner adsorption layer and an outer adsorption layer, as previously proposed for amorphous polymers. The inner adsorption layer was approximately 3.7 nm thick with a density comparable to that of the bulk. The outer adsorption layer was several nanometers thick and appeared to grow insufficiently on top of the inner adsorption layer under the annealing conditions examined in this study. This study clarifying the growth of the adsorption layer of polyethylene at the interface with an inorganic substrate is useful for improving the performance of polymer/inorganic filler nanocomposites due to the wide utility of crystalline polyolefins as polymer matrix materials in nanocomposites.

2.
Chemistry ; 30(36): e202401610, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38829184

RESUMO

Invited for the cover of this issue is the group of Yosuke Hisamatsu, Naoki Umezawa, and co-workers at Nagoya City University and Nagoya Institute of Technology. The image depicts the selective construction of perforated vesicles and nanofibers, influenced by the heating temperatures during the self-assembly process of the 4-aminoquinoline amphiphile. Read the full text of the article at 10.1002/chem.202400134.

3.
Chem Sci ; 15(14): 5113-5122, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577357

RESUMO

Controlling the transformation of versatile and reactive allenes is a considerable challenge. Herein, we report an efficient silylboronate-mediated cross-coupling reaction of organic fluorides with allenes to construct a series of sterically demanding α-ethynyl-containing all-carbon quaternary centers (ACQCs), using catalyst-free silyl-radical-relay reactions to selectively functionalize highly inert C-F bonds in organic fluorides. The key to the success of this transformation lies in the radical rearrangement of an in situ-generated allenyl radical to form a bulky tertiary propargyl radical; however, the transformation does not show efficiency when using the propargyl isomer directly. This unique reaction enables the cross-coupling of a tertiary carbon radical center with a C(sp2)-F bond or a benzylic C(sp3)-F bond. α-Ethynyl-containing ACQCs with (hetero)aromatic substituents and benzyl were efficiently synthesized in a single step using electronically and sterically diverse organic fluorides and allenes. The practical utility of this protocol is showcased by the late-stage functionalization of bioactive molecules and the modification of a liquid crystalline material.

4.
Chemistry ; 30(36): e202400134, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38361463

RESUMO

The construction of diverse and distinctive self-assembled structures in water, based on the control of the self-assembly processes of artificial small molecules, has received considerable attention in supramolecular chemistry. Cage-like perforated vesicles are distinctive and interesting self-assembled structures. However, the development of self-assembling molecules that can easily form perforated vesicles remains challenging. This paper reports a lower critical solution temperature (LCST) behavior-triggered self-assembly property of a 4-aminoquinoline (4-AQ)-based amphiphile with a tetra(ethylene glycol) chain, in HEPES buffer (pH 7.4). This property allows to form perforated vesicles after heating at 80 °C (> LCST). The self-assembly process of the 4-AQ amphiphile can be controlled by heating at 80 °C (> LCST) or 60 °C (< LCST). After cooling to room temperature, the selective construction of the perforated vesicles and nanofibers was achieved from the same 4-AQ amphiphile. Furthermore, the perforated vesicles exhibited slow morphological transformation into intertwined-like nanofibers but were easily restored by brief heating above the LCST.

5.
J Appl Crystallogr ; 57(Pt 1): 215-219, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38322715

RESUMO

An anomalous ultra-small-angle X-ray scattering (AUSAXS) system has been constructed at BL28XU at SPring-8 for time-resolved AUSAXS experiments. The path length was extended to 9.1 m and a minimum of q = 0.0069 nm-1 was attained. Scattering profiles at 0.0069 to 0.3 nm-1 were successfully obtained at 17 different X-ray energies in 30 s using the BL28XU optical setup, which enables adjustment of the energy of the incident X-rays quickly without the beam position drifting. Time-resolved measurements were conducted to investigate changes in the structure of zinc compounds in poly(styrene-ran-butadiene) rubber during vulcanization. A change in energy dependence of the scattered intensity with time was found during vulcanization, suggesting the transformation of zinc in the reaction.

6.
Chem Sci ; 14(16): 4248-4256, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37123196

RESUMO

Although the cross-couplings of aryl halides with diarylmethanes are mostly achieved by transition-metal catalysis, aryl fluorides are rarely used as coupling partners owing to the high inertness of C-F bonds. Herein, we describe the efficient silylboronate-mediated cross-coupling reaction of aryl fluorides with arylalkanes under transition-metal-free, room-temperature conditions. The combination of silylboronate and KO t Bu is critical for driving a radical process via the cleavage of C-F and C-H bonds in two appropriate coupling precursors, resulting in a cross-coupling product. This practical cross-coupling protocol is applicable to a wide variety of aryl fluorides with a C(sp2)-F bond. This method can be extended to other coupling partners with a C(sp3)-H bond, including diarylmethanes, diarylethanes, and monoarylalkanes. Many di- and triarylalkanes with tertiary or quaternary carbon centers can be obtained easily in moderate to high yields. We believe that the developed silylboronate-mediated cross-coupling method is a valuable contribution to C-F and C-H activation chemistry.

7.
Soft Matter ; 19(11): 2082-2089, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36808205

RESUMO

In the case of poly(methyl methacrylate) (PMMA) thin films on a Si substrate, thermal annealing induces the formation of a layer of PMMA chains tightly adsorbed near the substrate interface, and the strongly adsorbed PMMA remains on the substrate, even after washing with toluene (hereinafter called adsorbed sample). Neutron reflectometry revealed that the concerned structure consists of three layers: an inner layer (tightly bound on the substrate), a middle layer (bulk-like), and an outer layer (surface) in the adsorbed sample. When an adsorbed sample was exposed to toluene vapor, it became clear that, between the solid adsorption layer (which does not swell) and bulk-like swollen layer, there was a "buffer layer" that could sorb more toluene molecules than the bulk-like layer. This buffer layer was found not only in the adsorbed sample but also in the standard spin-cast PMMA thin films on the substrate. When the polymer chains were firmly adsorbed and immobilized on the Si substrate, the freedom of the possible structure right next to the tightly bound layer was reduced, which restricted the relaxation of the conformation of the polymer chain strongly. The "buffer layer" was manifested by the sorption of toluene with different scattering length density contrasts.

8.
Nanoscale ; 15(7): 3177-3187, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36655765

RESUMO

Controlling the kinetic processes of self-assembly and switching their kinetic properties according to the changes in external environments are crucial concepts in the field of supramolecular polymers in water for biological and biomedical applications. Here we report a new self-assembling amphiphilic 4-aminoquinoline (4-AQ)-tetraphenylethene (TPE) conjugate that exhibits kinetically controllable stepwise self-assembly and has the ability of switching its kinetic nature in response to pH. The self-assembly process of the 4-AQ amphiphile comprises the formation of sphere-like nanoparticles, a transition to short nanofibers, and their growth to long nanofibers with ∼1 µm length scale at room temperature (RT). The timescale of the self-assembly process differs according to the pH-responsivity of the 4-AQ moiety in a weakly acidic to neutral pH range. Therefore, after aging for 24 h at RT, the 4-AQ amphiphile forms metastable short nanofibers at pH 5.5, while it forms thermodynamically favored long nanofibers at pH 7.4. Moreover, the modulation of nanofiber growth proceeding spontaneously at RT was achieved by switching the kinetic pathway through changing the pH between 7.4 and 5.5.

9.
Langmuir ; 38(41): 12457-12465, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36194884

RESUMO

We measured the neutron reflectivity (NR) of isotactic polypropylene (PP) thin films deposited on Si substrates modified by hexamethyldisilazane (HMDS) at the saturated vapor pressure of deuterated water at 25 °C and 60 °C/85% RH to investigate the effect of HMDS on the interfacial water accumulation in PP-based polymer/inorganic filler nanocomposites and metal/resin bonding materials. We found that the amount of water accumulated at the PP/Si interface decreased with increasing immersion time of the Si substrate in a solution of HMDS in hexane prior to PP film deposition. During the immersion of the Si substrate, the HMDS molecules were deposited on the Si substrate as a monolayer without aggregation. Furthermore, the coverage of the HMDS monolayer on the Si substrate increased with increasing immersion time. At 60 ° C and 85% RH, only a slight amount of interfacial water was detected after HMDS treatment for 1200 min. As a result, the maximum concentration of interfacial water was reduced to 0.1 from 0.3, where the latter corresponds to the PP film deposited on the untreated substrate.

10.
Langmuir ; 37(49): 14550-14557, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34865493

RESUMO

We performed neutron reflectivity (NR) measurements of isotactic polypropylene (PP) thin films deposited on a Si substrate at the saturated vapor pressure of deuterated water to investigate interfacial water accumulation between the PP and metal surfaces in PP-based polymer/inorganic filler nanocomposites and metal/resin bonding materials. The PP thin films prepared on a Si substrate by a spin-coating technique were adequate as a model system for the PP/metal interface in these materials. A water-rich layer with a maximum water concentration of 0.5, which was considerably higher than those reported in previous studies of organic/inorganic interfaces, was observed within a width of approximately 3 nm at the interface under saturated vapor conditions. This could be attributed to the weak interaction between the PP thin film and the Si substrate. The pathway of moisture transport to the interfacial region was along the interface rather than through the PP film because the hydrophobic PP thin film does not entirely swell with water vapor.

11.
Langmuir ; 36(49): 15181-15188, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33259712

RESUMO

We investigated the polymer chain dynamics in a 2-3 nm thick poly(vinyl acetate) (PVAc) adsorption layer on a Si substrate with a native oxide layer via neutron reflectometry combined with toluene vapor-induced swelling. We can investigate the polymer chain dynamics difference in the film thickness direction by the difference in the degree of swelling of the polymer layers detected by neutron reflectometry. The mobility of the polymer chains depends on the distance from the substrate. The results elucidated that the interfacial layer with a thickness of approximately 1 nm did not swell at all with toluene vapor, which is a solvent for PVAc. Meanwhile, the surface layer excessively swells with toluene vapor compared to the bulk. This indicates that the polymer chain within the interfacial region is immobilized by the substrate through hydrogen-bonding interaction, but in the surface region, the surface effect overcomes this interfacial interaction. We concluded that the polymer chains in the adsorption layer are either strongly constrained to the substrate, owing to hydrogen bonding, or more mobile than the bulk, owing to the surface effect.

12.
Microscopy (Oxf) ; 69(6): 408-410, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-32648927

RESUMO

In this study, a method was developed for examining the distribution pattern of inorganic substances dispersed in hydrogel-filled medical devices. Transmission electron microscopy (TEM) using ultra-thin cryosectioning (owing to hydrogel's water content) was performed on contact lenses with an iris pattern in which the distribution pattern of inorganic pigments was problematic. We confirmed the depth and distribution pattern of pigments in the hydrogel. The results indicated that ultra-thin cryosectioning with TEM was effective for inspecting the distribution of inorganic substances in hydrogel-filled devices.

13.
Langmuir ; 36(26): 7627-7633, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490677

RESUMO

We investigated the self-assembly of surfactin (SFNa), a cyclic peptide amphiphile produced by Bacillus subtilis, in a nonpolar organic solvent, namely, cyclohexane (CHx). The CHx solution of SFNa formed a thermoreversible organogel. Transmission electron microscopy and small-angle X-ray scattering (SAXS) analyses showed that gelation of the CHx solution of SFNa was caused by physical cross-linking of SFNa nanofibers. Wide-angle X-ray diffraction and Fourier-transform infrared analyses showed that the SFNa nanofibers were formed by one-dimensional stacking of SFNa rings with a period of 0.48 nm corresponding to the length of inter-ring hydrogen bonds between amide groups. A combination of SAXS and small-angle neutron scattering investigations of CHx and deuterated CHx solutions of SFNa nanofibers containing H2O or D2O showed that the SFNa nanofibers had a hydrophilic interior and formed water channels by water incorporation in this region.

14.
Langmuir ; 36(13): 3415-3424, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32176499

RESUMO

We investigated in detail the structures in the poly(vinyl alcohol) (PVA) adsorption layers on a Si substrate, which remained on the substrate after immersing the relatively thick 30-50 nm films in hot water, by neutron reflectometry under humid conditions. For the PVA with a degree of saponification exceeding 98 mol %, the adsorption layer exhibits a three-layered structure in the thickness direction. The bottom layer is considered to be the so-called inner adsorption layer that is not fully swollen with water vapor. This may be because the polymer chains in the inner adsorption layer are strongly constrained onto the substrate, which inhibits water vapor penetration. The polymer chains in this layer have many contact points to the substrate via the hydrogen bonding between the hydroxyl groups in the polymer chain and the silanol groups on the surface of the Si substrate and consequently exhibit extremely slow dynamics. Therefore, it is inferred that the bottom layer is fully amorphous. Furthermore, we consider the middle layer to be somewhat amorphous because parts of the molecular chains are pinned below the interface between the middle and bottom layers. The molecular chains in the top layer become more mobile and ordered, owing to the large distance from the strongly constrained bottom layer; therefore, they exhibit a much lower degree of swelling compared to the middle amorphous layer. Meanwhile, for the PVA with a much lower degree of saponification, the adsorption layer structure consists of the two-layers. The bottom layer forms the inner adsorption layer that moderately swells with water vapor because the polymer chains have few contact points to the substrate. The molecular chains in the middle layer, therefore, are somewhat crystallizable because of this weak constraint.

15.
ACS Appl Bio Mater ; 3(12): 8865-8871, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019562

RESUMO

Biocatalytic films are attracting growing attention for their significant potential as scaffolds for therapeutic reactor devices. However, conventional film fabrication methods result either in enzyme denaturation or require cumbersome procedures. Here, we report the preparation of biocatalytic films via self-assembly of a carbohydrate block copolymer and a polysaccharide. Enzyme-loaded films can be prepared by simply drying the polymer solution, and the loaded enzymes retain their biocatalytic activities in the film for prolonged periods of time. We also demonstrate that the enzyme-loaded films can successfully transform a prodrug into an antitumor drug that inhibits tumor cell growth. Our work highlights the potential of these biocatalytic self-assembled films as therapeutic reactor devices for enzyme prodrug therapy. Given the simplicity of the preparation method, this approach could improve the versatility of biocatalytic films and consequently expand their applicability from exclusive use in therapeutic reactor devices to sensing and diagnosis.

16.
Langmuir ; 35(34): 11099-11107, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31365260

RESUMO

We investigated the swelling behaviors of poly(vinyl alcohol) (PVA) films deposited on Si wafers with water vapor, which is a good solvent for PVA for elucidating structural and dynamical heterogeneities in the film thickness direction. Using deuterated water vapor, structural and dynamical differences in the thickness direction can be detected easily as different degrees of swelling in the thickness direction by neutron reflectivity. Consequently, the PVA film with a degree of saponification exceeding 98 mol % exhibits a three-layered structure in the thickness direction. It is considered that an adsorption layer consisting of molecular chains that are strongly adsorbed onto the solid substrate is formed at the interface with the substrate, which is not swollen with water vapor compared with the bulk-like layer above it. The adsorption layer is considered to exhibit significantly slower dynamics than the bulk. Furthermore, a surface layer that swells excessively compared with the underneath bulk-like layer is found. This excess swelling of the surface layer may be related to a higher mobility of the molecular chains or lower crystallinity at the surface region compared to the underneath bulk-like layer. Meanwhile, for the PVA film with a much lower degree of saponification, a thin layer with a slightly lower degree of swelling than the bulk-like layer above it can be detected at the interface between the film and substrate only under a high humidity condition. This layer is considered to be the adsorption layer composed of molecular chains loosely adsorbed onto the Si substrate.

17.
Sci Rep ; 9(1): 6011, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979915

RESUMO

Helicobacter pylori (Hp) infection is related to the pathogenesis of chronic gastric disorders and extragastric diseases. Here, we examined the anorexigenic and anxiogenic effects of Hp vacuolating cytotoxin A (VacA) through activation of hypothalamic urocortin1 (Ucn1). VacA was detected in the hypothalamus after peripheral administration and increased Ucn1 mRNA expression and c-Fos-positive cells in the hypothalamus but not in the nucleus tractus solitarius. c-Fos and Ucn1-double positive cells were detected. CRF1 and CRF2 receptor antagonists suppressed VacA-induced anxiety and anorexia, respectively. VacA activated single paraventricular nucleus neurons and A7r5 cells; this activation was inhibited by phospholipase C (PLC) and protein kinase C (PKC) inhibitors. VacA causes anorexia and anxiety through the intracellular PLC-PKC pathway, migrates across the blood-brain barrier, and activates the Ucn1-CRF receptor axis.


Assuntos
Anorexia/induzido quimicamente , Ansiedade/induzido quimicamente , Citotoxinas/toxicidade , Helicobacter pylori/citologia , Hipotálamo/efeitos dos fármacos , Urocortinas/metabolismo , Vacúolos/metabolismo , Animais , Anorexia/genética , Ansiedade/genética , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Gerbillinae , Helicobacter pylori/fisiologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Urocortinas/genética
18.
Langmuir ; 34(8): 2856-2864, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29377703

RESUMO

We have investigated the relationship between the peel strength of a block copolymer-based pressure-sensitive adhesive comprising of poly(methyl methacrylate) (PMMA) and poly(n-butyl acrylate) (PnBA) components from the substrate and the microdomain orientations in the interfacial region between the adhesive and the substrate. For the PMMA substrate, the PMMA component in the adhesive with a strong affinity for the substrate is attached to the surface of the substrate during an aging process of the sample at 140 °C. Next, the PMMA layer adjacent to the substrate surface is overlaid with a PnBA layer, which gets covalently connected, resulting in the horizontal alignment of the lamellae in the interfacial region. The peel strength of the adhesive substantially increases during aging at 140 °C, which takes the same time as the completion of the horizontally oriented lamellar structure. However, in the case of the polystyrene (PS) substrate, both the components in the adhesive repel the substrate, leading to the formation of the vertically oriented lamellar structure. As a result, the peel strength of the adhesive with respect to its PS substrate does not entirely increase on aging. It is suggested that the peel strength of the adhesive is highly correlated with the interfacial energy between the adhesive and substrate, which can be estimated from the microdomain orientation in the interfacial region.

19.
J Phys Condens Matter ; 29(20): 204002, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338476

RESUMO

Microphase-separated structures in a polybutadiene-poly(ε-caprolactone) diblock copolymer (PB-PCL)/polybutadiene homopolymer (PB) blend were investigated by small-angle x-ray scattering (SAXS). Non-equilibrium spherical micelles were observed at temperatures ranging between 60 and 100 °C. An SAXS profile with >60 scattering peaks was recorded at 140 °C. All the peak positions were in good agreement with theoretical Frank-Kasper σ phase peak positions. Thus, these results indicate the formation of a Frank-Kasper σ phase in the PB-PCL/PB blend at 140 °C.

20.
ACS Omega ; 2(12): 8580-8590, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457391

RESUMO

The morphologies of the microphase-separated structures in the binary blends of diblock copolymers (AB/AB) have been studied intensively for the case of diblock copolymers bearing antisymmetric compositions with similar molecular weights. Here, the two diblock copolymers 1 and 2, of which compositions are 0.5 - x and 0.5 + x (0 < x < 0.5), respectively, were blended, and the morphology diagram was constructed in the plot of χZ vs the average composition of the A component, where χ is the interaction parameter between A and B segments and Z is the average degree of polymerization of the two AB diblock copolymers. The temperature-dependent morphologies were analyzed by synchrotron small-angle X-ray scattering (SAXS) measurements. It was found that the morphology diagram agrees in principle with the theoretical one for the neat AB diblocks by Matsen and Bates (Macromolecules 1996, 29, 1091-1098), although the disordered phase was a bit expanded in the experimentally determined morphology diagram. Anomalous temperature dependencies in the lamellar spacing have been also comprehensively studied for the binary blends of antisymmetric diblock copolymers as a function of the degree of compositional asymmetry by closely adjusting the average composition in the blend specimen at 0.50. For this purpose, more than 20 neat diblock copolymers have been synthesized with a wide range of compositions from 0.20 to 0.87 and a range of molecular weight of 12 000-33 800. The temperature dependencies of the lamellar spacing were also analyzed by synchrotron SAXS measurements. As a result, the following things were found. The scaling exponent α in D ∼ T α was still negative but slightly larger than the usual value (i.e., α = -0.33) for the smaller degree of asymmetry in the composition (i.e., x is small), while α became positive for the higher degree of asymmetry. The latter result is very anomalous because the temperature dependence is opposite (i.e., the lamellar spacing increases with an increase of temperature). The value of α was found to be linearly rationalized with the degree of asymmetry τ (which is especially introduced in the current paper for this purpose), for the binary blends with the average composition of 0.50. Based on this result, one can prepare lamellar microdomains, of which spacing does not change with temperature, by blending two diblock copolymers with τ = 1.33 (corresponding to 0.3 and 0.7 of compositions) having similar molecular weights. This would be important for manufacturing materials with properties (for instance, the optical property) independent of temperature. From the current study, the binary blends of the antisymmetric diblock copolymers are concluded to be versatile such that the precise controls of the morphologies and the temperature dependencies of the lamellar microdomains are plausible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...