Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2014: 710354, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24804237

RESUMO

The present study investigated the potential of a novel micropatterned substrate for neocartilage formation. Articular chondrocytes were cultured on poly( ɛ-caprolactone) materials whose surfaces were either flat or honeycomb-patterned. The latter was prepared using a novel self-organization technique, while the former, was prepared by spin-coating. The chondrocytes attached and proliferated on both surfaces. On the honeycomb films, chondrocytes were found at the top surface and encased within the 10 µm pores. Meanwhile, chondrocytes on the spin-coated surface flattened out. Accumulation of DNA and keratin sulphate was comparatively higher on the honeycomb films within the first 7 days. At their respective peaks, DNA concentration increased on the honeycomb and flat surfaces by approximately 210% and 400% of their day 1 values, respectively. However, cultures on the flat surface took longer to peak. Extracellular Matrix (ECM) concentrations peaked at 900% and 320% increases for the honeycomb and flat cultures. Type II collagen was upregulated on the honeycomb and flat surfaces by as much as 28% and 25% of their day 1 values, while aggrecan was downregulated with time, by 3.4% and 7.4%. These initial results demonstrate the potential usefulness of honeycomb-based scaffolds during early cultures neocartilage and soft tissue engineering.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Proliferação de Células/genética , Condrócitos/citologia , Engenharia Tecidual , Animais , Cartilagem Articular/citologia , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Poliésteres/química , Coelhos , Propriedades de Superfície
2.
Tissue Eng Part A ; 19(17-18): 2087-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23688155

RESUMO

Substrate topography influences cell adhesion, proliferation, and differentiation. In this study, poly (ε-caprolactone) (PCL) films with a well-defined honeycomb structure of porosity 3-4, 5-6, 10-11, or 15-16 µm were contrasted with flat surfaces for their ability to support primary rat osteoblast adhesion and mineralized extracellular matrix deposition in vitro. Immunofluorescent visualization of vinculin and rhodamine phalloidin binding of actin were used to investigate cell adhesion and morphology. Localization of the alkaline phosphatase activity and Alizarin Red staining were performed to assess the osteoblast activity and deposition of a mineralized matrix. Scanning electron microscopy together with energy-dispersive X-ray spectroscopy was used to provide morphological analysis of cell-film interactions, the deposited matrix, and elemental analysis of the mineralized structures. After 24 h of culture, there were no differences in cell numbers on porous or flat PCL surfaces, but there were changes in cell morphology. Osteoblasts on honeycomb films had a smaller surface area and were less circular than cells on flat PCL. Analysis of cells cultured for 35 days under osteogenic conditions revealed that osteoblasts on all substrates acquired alkaline phosphatase activity, but levels of mineralized matrix were increased on films with 3-4-µm pore sizes. The bone-like matrix with a Ca:P ratio of 1.69±0.08 could be identified in larger areas often aligning with substrate topography. In addition, smaller spherical deposits (0.5-1 µm in diameter) with a Ca:P ratio of 1.3±0.08 were observed at the surface and particularly within the pores of the PCL film. Localization of vinculin showed significant decreases in the number of focal adhesion structures per unit cell area on 5-6, 10-11, and 15-16-µm surfaces compared to flat PCL, while focal complexes with a smaller area (0-2 µm(2)) were more abundant on 3-4 and 5-6-µm surfaces. Observation of cell interaction with these surfaces identified cytoplasmic protrusions that extended into and sealed the pores of these PCL films creating an extracellular space in which, the conditions could influence the deposition and formation of the mineralized matrix.


Assuntos
Caproatos/química , Lactonas/química , Osteoblastos/citologia , Osteogênese/fisiologia , Poliésteres/química , Animais , Células Cultivadas , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Ratos
3.
J Biomater Sci Polym Ed ; 21(14): 1947-56, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20615329

RESUMO

Excessive accumulation of visceral adipose tissue, particularly mesenteric adipose tissue, is one of the most important factors in the pathogenesis of the metabolic syndrome. We previously developed a system for physiologically differentiating rat mesenteric-stromal vascular cells (mSVCs) to mesenteric-visceral adipocytes (mVACs) and are currently implementing various approaches to elucidate the details of the pathophysiology of mVACs. However, there is a critical problem to overcome, namely, that mature mVACs detach from the culture dishes and lose their function after approx. 10 days in culture. Therefore, we examined a culture of mSVCs on self-organized honeycomb-patterned films (honeycomb films) in order to establish a long-term culture for mVACs. The honeycomb films with highly regular porous structures can be prepared under humid casting conditions. These films can be prepared with ease, at a low cost and without any limitations pertaining to the availability of materials for the scaffold. As a result, mSVCs differentiated to mVACs and maintained their function for the secretion of adiponectin on the honeycomb films for at least 40 days. In addition, we investigated the influence of the pore size of the honeycomb films on mVAC behavior. We found that a honeycomb film with a pore size of 20 µm showed the highest mVAC function and optimum size for the long-term culture of mVACs. Thus, we established a long-term culture system for mVACs using the honeycomb films. We believe that this culture system will contribute to the understanding of the pathophysiology of mVACs and to the evaluation of drug candidates for the metabolic syndrome.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Materiais Biocompatíveis/química , Mesentério/citologia , Animais , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Masculino , Reação em Cadeia da Polimerase , Porosidade , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
4.
J Biomed Mater Res A ; 88(1): 74-83, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18260145

RESUMO

Tough triple network (TN) hydrogels that facilitate cell spreading and proliferation and, at the same time, preserve high mechanical strength are synthesized by the introduction of a proper component of negatively charged moiety, poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) (PNaAMPS), on which cells proliferate, with neutral moiety, poly(N,N-dimethylacrylamide) (DMAAm), on which cells do not proliferate, as the third network component, to PNaAMPS/PDMAAm double network (DN) gels. For synthesizing the tough TN gels to support cell viability, the effect of charge density on the behaviors of three kinds of cells, bovine fetal aorta endothelial cells (BFAECs), human umbilical endothelial cells (HUVECs), and rabbit synovial tissue-derived fibroblast cells (RSTFCs) were systematically investigated on poly(NaAMPS-co-DMAAm) gels with different charge density. The charge density of the gels was tuned by changing the molar fraction (F) of negatively charged monomer in the copolymer hydrogels. Critical F, which corresponds to a critical value of the zeta potential (zeta), is observed for cell spreading and proliferation. The critical F for BFAECs and HUVECs proliferate to confluent is F = 0.4 (zeta = -20 mV), whereas the critical F for RSTFCs shifts to F = 0.7 (zeta = -28.5 mV). The effect of gel charge density on cell behavior is correlated well with the total adsorbed proteins and fibronectin. By applying these results, cell proliferation is successfully realized on the tough TN hydrogels without surface modification with any cell adhesive proteins or peptides. The results will substantially promote the application of tough hydrogels as soft and wet tissues.


Assuntos
Proliferação de Células/efeitos dos fármacos , Hidrogéis/química , Polímeros/química , Animais , Aorta , Bovinos , Adesão Celular , Técnicas de Cultura de Células , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Polímeros/farmacologia , Proteínas/metabolismo , Coelhos , Eletricidade Estática , Líquido Sinovial/citologia , Engenharia Tecidual , Veias Umbilicais
5.
J Biomed Mater Res B Appl Biomater ; 86(2): 353-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18161833

RESUMO

Intraperitoneal adhesion is a serious problem concerning abdominal surgery. This study evaluated the performance of a honeycomb-patterned poly(lactide) (HCPLA) film as a physical barrier for preventing postoperative adhesion. HCPLA films were prepared using dioleoylphosphatidylethanolamine (DOPE) or a copolymer of dodecylacrylamide and omega-carboxyhexylacrylamide (CAP) as a surfactant (HCPLA-DOPE and HCPLA-CAP, respectively). In an in vivo adhesion prevention experiment, male Sprague-Dawley rats underwent standard cecum abrasion before midline laparotomy. We placed 2 cm x 2 cm HCPLA and flat films on the gliding interfaces; untreated rats formed the control group. After 1 week, adhesion was scored from 0 to 4. No significant difference was observed in the scores among groups, but macroscopic differences in adhesion prevention were observed. The adhesive strength of HCPLA-DOPE (18.1 +/- 1.2 g) to skinless chicken breast was significantly higher than that of the flat film (15.2 +/- 0.8 g, p < 0.05). Further, the adhesion score after 1 week for the HCPLA-DOPE group (1.6 +/- 0.2) was significantly lower than that for the control group (3.0 +/- 0.3, p < 0.05) but comparable to that for the Seprafilm group (1.4 +/- 0.3). These results demonstrated the potential of HCPLA-DOPE as a physical barrier for preventing postoperative adhesion.


Assuntos
Poliésteres/uso terapêutico , Complicações Pós-Operatórias/prevenção & controle , Telas Cirúrgicas , Aderências Teciduais/prevenção & controle , Parede Abdominal , Adesividade , Animais , Masculino , Teste de Materiais , Modelos Animais , Ratos , Ratos Sprague-Dawley
6.
J Nanosci Nanotechnol ; 7(3): 763-72, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17450831

RESUMO

The design of nano- and microstructures based on self-organization is a key area of research in the search for new materials, and it has a variety of potential applications in tissue engineering scaffolds. We have reported a honeycomb-patterned polymer film (honeycomb film) with highly regular pores that is formed by self-organization. This study describes the behavior of vascular endothelial cells (ECs) on honeycomb films with four different pore sizes (5, 9, 12, and 16 microm) as well as on a flat film. We examined the influence of the honeycomb pattern and pore size on cell behavior. The changes in cell morphologies, actin filaments, vinculin clusters, cell proliferation, and secreted extracellular matrix (ECM) (fibronectin, laminin, type IV collagen, and elastin) production profiles were observed by using optical, fluorescence, and scanning electron microscopy. The ECs that adhered to the flat film showed an elongated morphology with random orientation; the actin filaments and focal adhesions were not conspicuous. On the other hand, the ECs on the honeycomb films exhibited greater spreading and flattening; the degree of spreading of the ECs increased with an increase in the pore size. The actin filaments and focal adhesions appeared conspicuous, and the focal adhesions localized along the edge of the honeycomb pores were distributed over the entire projected cell area. The honeycomb film with a pore size of 5 microm showed the highest cell proliferation and ECM production profiles. These results suggest that the honeycomb film is a suitable material for designing a new vascular device.


Assuntos
Materiais Biocompatíveis , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Nanoestruturas , Polímeros , Animais , Materiais Biocompatíveis/química , Proliferação de Células , Células Cultivadas , Adesões Focais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Nanotecnologia , Polímeros/química , Suínos
7.
Biomaterials ; 28(10): 1752-60, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17188348

RESUMO

In this work we describe experiments designed to understand the human platelet adhesion to human umbilical vein endothelial cells (HUVECs) cultured on various kinds of chemically cross-linked anionic hydrogels, which were synthesized by radical polymerization. HUVECs could proliferate to sub-confluent or confluent on poly(acrylic acid) (PAA), poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) (PNaAMPS), and poly(sodium p-styrene sulfonate) (PNaSS) gels. The proliferation behavior was not sensitive to the cross-linker concentration of the gels. However, the platelet adhesion on the HUVECs cultured on these gels showed different behavior, as revealed by human platelet adhesion test in static conditions. Only a few platelets adhered on the HUVEC sheets cultured on PNaAMPS gels with 4 and 10mol% cross-linker concentrations, and completely no platelet adhered on the HUVEC sheets cultured on PNaSS gels with 4 and 10mol% cross-linker concentrations. On the other hand, a large number of platelets adhered on the HUVECs cultured on PAA gels with 1, 2mol% cross-linker concentrations and PNaAMPS gel with 2mol% cross-linker concentration. Furthermore, the study showed that promote of the glycocalyx of HUVECs with transforming growth factor-beta(1) (TGF-beta(1)) decreased platelet adhesion, and degrade the glycocalyx with heparinase I increased platelet adhesion. The results suggested that the glycocalyx of cultured HUVECs modulates platelet compatibility, and the amount of glycocalyx secreted by HUVECs dependents on the chemical structure and cross-linker concentration of gel scaffolds. This result should be applied to make the hybrid artificial blood vessel composes of gels and endothelial cells with high platelet compatibility.


Assuntos
Materiais Biocompatíveis/química , Plaquetas/citologia , Plaquetas/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Hidrogéis/química , Adesividade Plaquetária/fisiologia , Ânions , Comunicação Celular/fisiologia , Células Cultivadas , Glicocálix/metabolismo , Humanos , Teste de Materiais , Veias Umbilicais/citologia , Veias Umbilicais/fisiologia
8.
Biointerphases ; 2(4): 119-25, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20408647

RESUMO

The adhesion force between blood-compatible polymer (poly(2-methoxyethyl acrylate: PMEA) and proteins (fibrinogen and bovine serum albumin (BSA)) were measured by atomic force microscopy. The PMEA surface showed almost no adhesion to native protein molecules, whereas non-blood-compatible poly(n-butyl acrylate): PBA strongly adhered to proteins. Interestingly, adhesion did appear between PMEA and proteins when the proteins were denatured. In all cases, these trends were not affected by the conditions of the solution. Combining the results with previous reports, the authors conclude that interfacial water molecules play a critical role in the protein resistance of PMEA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...