Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29713, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720739

RESUMO

We have recently shown delayed increases in GABAB receptor (GABABR) subunit protein levels in the hippocampal dentate gyrus (DG), but not in the pyramidal CA1 and CA3 regions, at 15-30 days after the systemic single administration of trimethyltin (TMT) in mice. An attempt was thus made to determine whether the delayed increases return to the control levels found in naive mice afterward. In the DG on hippocampal slices obtained at 90 days after the administration, however, marked increases were still seen in protein levels of both GABABR1 and GABABR2 subunits without significant changes in calbindin and glial fibrillary acidic protein (GFAP) levels on immunoblotting analysis. Fluoro-Jade B staining clearly revealed the absence of degenerated neurons from the DG at 90 days after the administration. Although co-localization was invariably detected between GABABR2 subunit and GFAP in the DG at 30 days on immunohistochemical analysis, GABABR2-positive cells did not merge well with GFAP-positive cells in the DG at 90 days. These results suggest that both GABABR1 and GABABR2 subunits would be tardily and sustainably up-regulated by cells other than neurons and astrocytes in the murine DG at 90 days after a systemic single injection of TMT.

2.
Neurochem Res ; 47(9): 2780-2792, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35737203

RESUMO

Trimethyltin (TMT) has been used as a cytotoxin to neurons rather than glial cells in the mammalian hippocampus. The systemic administration of TMT led to declined fluorescence of ZnAF-2 DA staining as a marker of intact mossy fibers and increased fluorescence of Fluoro-Jade B staining as a marker of degenerated neurons during the initial 2 to 5 days after the administration with later ameliorations within 30 days in the hippocampal dentate gyrus (DG) and CA3 region in mice. On immunoblotting analysis, both GABABR1 and GABABR2 subunit levels increased during 15 to 30 days after TMT along with significant decreases in glutamatergic GluA1 and GluA2/3 receptor subunit levels during 2 to 7 days in the DG, but not in other hippocampal regions such as CA1 and CA3 regions. Immunohistochemical analysis revealed the constitutive and inducible expression of GABABR2 subunit in cells immunoreactive to an astrocytic marker as well as neuronal markers in the DG with the absence of neither GABABR1a nor GABABR1b subunit from cells positive to an astrocytic marker. These results suggest that both GABABR1 and GABABR2 subunits may be up-regulated in cells other than neurons and astroglia in the DG at a late stage of TMT intoxication in mice.


Assuntos
Compostos de Trimetilestanho , Animais , Giro Denteado/metabolismo , Hipocampo/metabolismo , Mamíferos , Camundongos , Receptores de GABA-B , Compostos de Trimetilestanho/toxicidade , Ácido gama-Aminobutírico/metabolismo
3.
Neurochem Int ; 62(2): 137-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23238131

RESUMO

Protein phosphorylation can be regulated by changes in kinase activity, phosphatase activity, or both. GABA(B) receptor R2 subunit (GABA(B)R2) is phosphorylated at S783 by 5'-AMP-activated-protein kinase (AMPK), and this phosphorylation modulates GABA(B) receptor desensitization. Since the GABA(B) receptor is an integral membrane protein, solubilizing GABA(B)R2 is difficult. To circumvent this problem and to identify specific phosphatases that dephosphorylate S783, we employed an in vitro assay based on dephosphorylation of proteins on PVDF membranes by purified phosphatases. Our method allowed us to demonstrate that S783 in GABA(B)R2 is directly dephosphorylated by PP2A (but not by PP1, PP2B nor PP2C) in a dose-dependent and okadaic acid-sensitive manner. We also show that the level of phosphorylation of the catalytic subunit of AMPK at T172 is reduced by PP1, PP2A and PP2C. Our data indicate that PP2A dephosphorylates GABA(B)R2(S783) less efficiently than AMPK(T172), and that additional phosphatases might be involved in S783 dephosphorylation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Membranas Artificiais , Receptores de GABA-B/metabolismo , Animais , Domínio Catalítico , Células Cultivadas , Camundongos , Fosforilação , Proteína Fosfatase 2/metabolismo
4.
Chronobiol Int ; 27(2): 213-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20370466

RESUMO

Lipopolysaccharide (LPS) is a pathogen-associated large molecule responsible for sepsis-related endotoxic shock, and the heart is one of the most common organs adversely affected. LPS is reported to increase serum TNFalpha levels and reduce Per1 and Per2 gene expression. Therefore, in this experiment, we determined the time-dependent effects of LPS on heart rate (HR) and circadian gene expression in the mouse heart and liver. HR of the LPS group was significantly elevated 2 and 8 h after injection compared to the control group. A significant percent increase in HR was observed at ZT6, 12, and 18. LPS increased Tnfalpha mRNA expression in the heart and liver at ZT6, 18, and 24. A time-dependent effect of LPS on reduction of Per1 and Per2 gene expression was also observed in the heart and liver. In order to examine the effect of LPS on cell damage, we examined apoptosis-related gene expression after LPS injection. Bax mRNA expression level of the LPS group was higher than that of the control group 8 and 26 h after injection. On the other hand, Bcl2 mRNA expression level of the LPS group was lower than that of the control group 2 and 26 h after injection. Dexamethasone strongly attenuated the LPS-induced increase of serum TNFalpha without significant change in Per1 and Per2 gene expression in the heart. In conclusion, the present results demonstrated that LPS exerts a time-dependent inhibitory effect on Per1 and Per2 gene expression in the heart and liver. The chronopharmacological lethal effect of LPS may be related to the time-dependent increase of serum TNFalpha level and simultaneously high level of Per2 gene expression in the heart and liver between ZT12-18. Taken together, chronopharmacological effect of LPS may be related to not only sickness behavior syndrome and mortality, but also circadian rhythm systems.


Assuntos
Relógios Biológicos , Expressão Gênica , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Miocárdio/metabolismo , Proteínas Circadianas Period/genética , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Dexametasona/farmacologia , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Proteínas Circadianas Period/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...