Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(2): 35, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587705

RESUMO

Fixing atmospheric nitrogen for use as fertilizer is a crucial process in promoting plant growth and enhancing crop yields in agricultural production. Currently, the chemical production of nitrogen fertilizer from atmospheric N2 relies on the energy-intensive Haber-Bosch process. Therefore, developing a low-cost and easily applicable method for fixing nitrogen from the air would provide a beneficial alternative. In this study, we tested the utilization of dinitrogen pentoxide (N2O5) gas, generated from oxygen and nitrogen present in ambient air with the help of a portable plasma device, as a nitrogen source for the model plant Arabidopsis thaliana. Nitrogen-deficient plants supplied with medium treated with N2O5, were able to overcome nitrogen deficiency, similar to those provided with medium containing a conventional nitrogen source. However, prolonged direct exposure of plants to N2O5 gas adversely affected their growth. Short-time exposure of plants to N2O5 gas mitigated its toxicity and was able to support growth. Moreover, when the exposure of N2O5 and the contact with plants were physically separated, plants cultured under nitrogen deficiency were able to grow. This study shows that N2O5 gas generated from atmospheric nitrogen can be used as an effective nutrient for plants, indicating its potential to serve as an alternative nitrogen fertilization method for promoting plant growth.


Assuntos
Arabidopsis , Gases , Nitrogênio , Fertilizantes , Oxigênio , Agricultura
2.
Sci Adv ; 9(22): eadg5495, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267352

RESUMO

Salinity stress can greatly reduce seed production because plants are especially sensitive to salt during their reproductive stage. Here, we show that the sodium ion transporter AtHKT1;1 is specifically expressed around the phloem and xylem of the stamen in Arabidopsis thaliana to prevent a marked decrease in seed production caused by salt stress. The stamens of AtHKT1;1 mutant under salt stress overaccumulate Na+, limiting their elongation and resulting in male sterility. Specifically restricting AtHKT1;1 expression to the phloem leads to a 1.5-fold increase in the seed yield upon sodium ion stress. Expanding phloem expression of AtHKT1;1 throughout the entire plant is a promising strategy for increasing plant productivity under salinity stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Simportadores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Simportadores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sódio/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Stress Biol ; 2(1): 52, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37676337

RESUMO

Potassium (K) is a major essential element in plant cells, and KUP/HAK/KT-type K+ transporters participate in the absorption of K+ into roots and in the long-distance transport to above-ground parts. In Arabidopsis thaliana, KUP9 is involved in the transport of K+ and Cs+ in roots. In this study, we investigated KUP9 function in relation to the K+ status of the plant. The expression of KUP9 was upregulated in older leaves on K+-depleted medium, compared to the expression of the other 12 KUP genes in the KUP/HAK/KT family in Arabidopsis. When grown on low K+ medium, the kup9 mutant had reduced chlorophyll content in seedlings and chlorosis in older rosette leaves. Tissue-specific expression of KUP9 determined by KUP9 promoter:GUS assay depended on the K+ status of the plants: In K+ sufficient medium, KUP9 was expressed in the leaf blade towards the leaf tip, whereas in K+ depleted medium expression was mainly found in the petioles. In accordance with this, K+ accumulated in the roots of kup9 plants. The short-term 43K+ tracer measurement showed that 43K was transferred at a lower rate in roots and shoots of kup9, compared to the wild type. These data show that KUP9 participates in the distribution of K+ in leaves and K+ absorption in roots under low K+ conditions.

4.
Sci Rep ; 9(1): 7863, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133660

RESUMO

Ion pumps and channels are responsible for a wide variety of biological functions. Ion pumps transport only one ion during each stimulus-dependent reaction cycle, whereas ion channels conduct a large number of ions during each cycle. Ion pumping rhodopsins such as archaerhodopsin-3 (Arch) are often utilized as light-dependent neural silencers in animals, but they require a high-density light illumination of around 1 mW/mm2. Recently, anion channelrhodopsins -1 and -2 (GtACR1 and GtACR2) were discovered as light-gated anion channels from the cryptophyte algae Guillardia theta. GtACRs are therefore expected to silence neural activity much more efficiently than Arch. In this study, we successfully expressed GtACRs in neurons of the nematode Caenorhabditis elegans (C. elegans) and quantitatively evaluated how potently GtACRs can silence neurons in freely moving C. elegans. The results showed that the light intensity required for GtACRs to cause locomotion paralysis was around 1 µW/mm2, which is three orders of magnitude smaller than the light intensity required for Arch. As attractive features, GtACRs are less harmfulness to worms and allow stable neural silencing effects under long-term illumination. Our findings thus demonstrate that GtACRs possess a hypersensitive neural silencing activity in C. elegans and are promising tools for long-term neural silencing.


Assuntos
Caenorhabditis elegans/genética , Channelrhodopsins/genética , Criptófitas/genética , Expressão Gênica , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados/genética , Caenorhabditis elegans/fisiologia , Células Cultivadas , Células HEK293 , Humanos , Luz , Locomoção , Masculino , Camundongos , Optogenética/métodos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...