Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 293(3): G591-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17585015

RESUMO

Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response.


Assuntos
Adaptação Fisiológica , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Neovascularização Fisiológica , Glândulas Salivares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adenoviridae/genética , Animais , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Íleo/irrigação sanguínea , Íleo/fisiopatologia , Íleo/cirurgia , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Mucosa Intestinal/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Microvilosidades/metabolismo , Microvilosidades/patologia , Modelos Animais , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Glândulas Salivares/cirurgia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/sangue
2.
Hum Gene Ther ; 14(17): 1605-18, 2003 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-14633403

RESUMO

Female nonobese diabetic (NOD) mice develop spontaneous autoimmune sialadenitis and loss of salivary flow, and are a widely used model of Sjögren's syndrome. We examined the feasibility of local salivary gland immunomodulatory gene delivery to alter these sequelae in NOD mice. We constructed recombinant adeno-associated virus (rAAV) vectors encoding either human interleukin 10 (rAAVhIL-10) or beta-galactosidase (rAAVLacZ, control vector). Mice received rAAVhIL-10 or rAAVLacZ by retrograde submandibular ductal instillation either at age 8 weeks (early, before onset of sialadenitis), or at 16 weeks (late, after onset of sialadenitis). As a systemic treatment control, separate mice received intramuscular delivery of rAAVhIL-10 at each time point. Both submandibular and intramuscular delivery of vector led to low circulating levels of hIL-10. After submandibular administration of rAAVhIL-10, salivary flow rates at 20 weeks for both the early and late treatment groups were significantly higher than for both rAAVLacZ-administered and untreated mice. Systemic delivery of rAAVhIL-10 led to improved salivary flow in the late treatment group. Inflammatory infiltrates in submandibular glands, however, were significantly reduced only in mice receiving rAAVhIL-10 locally in the salivary gland compared with mice receiving this vector intramuscularly, or rAAVLacZ or no treatment. In addition, after submandibular rAAVhIL-10 delivery, NOD mice exhibited significantly lower blood glucose, and higher serum insulin, levels than all other groups, indicating some systemic benefit of this treatment. These studies show that expression of hIL-10 by rAAV vectors can have disease-modifying effects in the salivary glands of NOD mice, and suggest that local immunomodulatory gene transfer may be useful for managing the salivary gland pathology in Sjögren's syndrome.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Interleucina-10/genética , Síndrome de Sjogren/terapia , Animais , Linhagem Celular , DNA Complementar/metabolismo , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândulas Salivares/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...