Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404931, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976515

RESUMO

The intensive study of electrochemical CO2 reduction reaction (CO2RR) has resulted in numerous highly selective catalysts, however, most of these still exhibit uncontrollable selectivity. Here, it is reported for the first time the controllable CH4/C2H4 selectivity by modulating the electronic states of Cu incorporated in metal-organic frameworks with different functional ligands, achieving a Faradaic efficiency of 58% for CH4 on Cu-incorporated UiO-66-H (Ce) composite catalysts, Cu/UiO-66-H (Ce) and that of 44% for C2H4 on Cu/UiO-66-F (Ce). In situ measurements of Raman and X-ray absorption spectra revealed that the electron-withdrawing ability of the ligand side group controls the product selectivity on MOFs through the modulation of the electronic states of Cu. This work opens new prospects for the development of MOFs as a platform for the tailored tuning of selectivity in CO2RR.

2.
Nat Commun ; 15(1): 491, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225248

RESUMO

Carbon dioxide (CO2) electroreduction reaction (CO2RR) offers a promising strategy for the conversion of CO2 into valuable chemicals and fuels. CO2RR in acidic electrolytes would have various advantages due to the suppression of carbonate formation. However, its reaction rate is severely limited by the slow CO2 diffusion due to the absence of hydroxide that facilitates the CO2 diffusion in an acidic environment. Here, we design an optimal architecture of a gas diffusion electrode (GDE) employing a copper-based ultrathin superhydrophobic macroporous layer, in which the CO2 diffusion is highly enhanced. This GDE retains its applicability even under mechanical deformation conditions. The CO2RR in acidic electrolytes exhibits a Faradaic efficiency of 87% with a partial current density [Formula: see text] of -1.6 A cm-2 for multicarbon products (C2+), and [Formula: see text] of -0.34 A cm-2 when applying dilute 25% CO2. In a highly acidic environment, C2+ formation occurs via a second order reaction which is controlled by both the catalyst and its hydroxide.

3.
Chem Commun (Camb) ; 59(75): 11188-11191, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37622265

RESUMO

Electrochemical CO2 reduction (eCO2R) by direct introduction of 60% air-containing CO2 mixed gas was demonstrated using a porous Cu network cathode formed on a hydrophobic gas diffusion layer (Cu/P-GDL). Cu/P-GDL exhibited eCO2R using the mixed gas with a remarkable faradaic efficiency of 85% for the production of C2+ chemicals, whereas a Cu cathode constructed on a conventional carbon gas diffusion layer (Cu/C-GDL) produced neither eCO2R products nor H2. Furthermore, the electrolyzer with Cu/P-GDL and optimized anode configuration achieved a partial current density of 132 mA cm-2 for C2+ chemicals even in the presence of 12% O2. Demonstration of eCO2R with impure CO2 gas would greatly expand its future applications.

4.
J Alzheimers Dis ; 89(1): 381-387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871351

RESUMO

BACKGROUND: Cerebral amyloid angiopathy is a cerebrovascular disease directly implicated in Alzheimer's disease pathogenesis through amyloid-ß deposition. Growing evidence has shown a pivotal role of chronic neuroinflammation both in cerebral amyloid angiopathy and Alzheimer's disease. OBJECTIVE: The aim of this study was to investigate whether circulating levels of the complement 3, a crucial component of the innate immune system, are increased in patients with cerebral amyloid angiopathy. METHODS: Serum complement 3 levels were retrospectively measured by a sandwich enzyme-linked immunosorbent assay in a single-center cohort of patients with mild cognitive impairment. The diagnosis of cerebral amyloid angiopathy was based on the modified Boston criteria. Logistic regression analysis was performed to identify the predictive factors for cerebral amyloid angiopathy. RESULTS: We analyzed 55 mild cognitive impairment patients (mean age [standard deviation]: 76.3 [6.8] years; 33 [60% ] men). Complement 3 levels were significantly increased in cerebral amyloid angiopathy patients (n = 16) compared with those without cerebral amyloid angiopathy (n = 39) (median [interquartile range]: 0.43 [0.34-0.65] versus 0.35 [0.25-0.45], respectively; p = 0.040). Univariate and multivariate logistic regression analysis revealed that increased complement 3 levels were significantly associated with cerebral amyloid angiopathy. After selection of the best predictive model using stepwise selection, complement 3 was preserved as a significant independent predictive factor for cerebral amyloid angiopathy (odds ratio per 0.1 unit/mL increase [95% confidence interval]: 1.407 [1.042-1.899]; p = 0.026). CONCLUSION: Complement activation may play a pivotal role in cerebral amyloid angiopathy. Complement 3 may be a novel diagnostic biomarker for cerebral amyloid angiopathy.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Biomarcadores , Angiopatia Amiloide Cerebral/patologia , Complemento C3 , Feminino , Humanos , Masculino , Estudos Retrospectivos
5.
Nanoscale ; 14(27): 9842-9848, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35771202

RESUMO

The ordered structure of platinum-cobalt (Pt-Co) alloy nanoparticles has been studied actively because the structure influences their magnetic and catalytic properties. On the Pt-Co alloy's surface, Pt atoms preferentially segregate during annealing to reduce the surface energy. Such surface segregation has been shown to promote the formation of an ordered structure near the surface of Pt-Co thin films. Although this phenomenon seems also useful to control the nanoparticle structure, this has not been observed. Here, we have studied the ordered structure in annealed Pt@Co core-shell nanoparticles using a scanning transmission electron microscope. The nanoparticles were chemically synthesized, and their structural changes after annealing at 600 °C, 700 °C, and 800 °C for 3 h were observed. After being annealed at 600 °C and 800 °C, the particles contained the L12-Pt3Co ordered structure. The structure seems reasonable considering an initial Pt : Co ratio of ∼4 : 1. However, we found that the L10-PtCo structure was formed near the nanoparticle surface after annealing at 700 °C. The L10-PtCo structure was thought to be formed from the surface segregation of Pt atoms and insufficient diffusion of Pt and Co atoms to mix them in the particle overall.

6.
Nat Commun ; 13(1): 1047, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210441

RESUMO

An infinite number of crystal structures in a multicomponent alloy with a specific atomic ratio can be devised, although only thermodynamically-stable phases can be formed. Here, we experimentally show the first example of a layer-structured pseudo-binary alloy, theoretically called Z3-FePd3. This Z3 structure is achieved by adding a small amount of In, which is immiscible with Fe but miscible with Pd and consists of an alternate L10 (CuAu-type)-PdFePd trilayer and Pd-In ordered alloy monolayer along the c axis. First-principles calculations strongly support that the specific inter-element miscibility of In atoms stabilizes the thermodynamically-unstable Z3-FePd3 phase without significantly changing the original density of states of the Z3-FePd3 phase. Our results demonstrate that the specific inter-element miscibility can switch stable structures and manipulate the material nature with a slight composition change.

7.
Adv Mater ; 34(16): e2110552, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35212064

RESUMO

The oxygen evolution reaction (OER) is a critical element for all sorts of reactions that use water as a hydrogen source, such as hydrogen evolution and electrochemical CO2 reduction, and novel design principles that provide highly active sites on OER electrocatalysts push the limits of their practical applications. Herein, Au-cluster loading on unilamellar exfoliated layered double hydroxide (ULDH) electrocatalysts for the OER is demonstrated to fabricate a heterointerface between Au clusters and ULDHs as an active site, which is accompanied by the oxidation state modulation of the active site and interfacial direct OO coupling ("interfacial DOOC"). The Au-cluster-loaded ULDHs exhibit excellent activities for the OER with an overpotential of 189 mV at 10 mA cm-2 . X-ray absorption fine structure measurements reveal that charge transfer from the Au clusters to ULDHs modifies the oxidation states of trivalent metal ions, which can be active sites on the ULDHs. The present study, supported by highly sensitive spectroscopy combining reflection absorption infrared spectroscopy and modulation-excitation spectroscopy and density functional theory calculations, indicates that active sites at the interface between the Au clusters and ULDHs promote a novel OER mechanism through interfacial DOOC, thereby achieving outstanding catalytic performance.

8.
ACS Nano ; 15(12): 20079-20086, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34860010

RESUMO

The adsorption states of N2 and H2 on MgO-supported Ru nanoparticles under conditions close to those of ammonia synthesis (AS; 1 atm, 250 °C) were uncovered by modulation-excitation infrared spectroscopy and density functional theory calculations using a nanoscale Ru particle model. The two most intense N2 adsorption peaks corresponded to the vertical chemisorption of N2 on the nanoparticle's top and bridge sites, while the remaining peaks were assigned to horizontally adsorbed N2 in view of the site heterogeneity of Ru nanoparticles. Long-term observations showed that vertically adsorbed N2 molecules gradually migrated from the top sites to the bridge sites. Compared to those adsorbed vertically, N2 molecules adsorbed horizontally exhibited a lower dipole moment, an increased N─N bond distance, and a decreased N─N bond order (i.e., were activated), which was ascribed to enhanced Ru-to-N charge transfer. H2 molecules were preferentially adsorbed horizontally on top sites and then rapidly dissociated to afford strongly surface-bound H atoms and thus block the active sites of Ru nanoparticles. Our results clarify the controversial adsorption/desorption behavior of N2 and H2 on AS catalysts and facilitate their further development.

9.
Sci Rep ; 11(1): 13929, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230515

RESUMO

We demonstrate thermo-electrochemical (TEC) conversion using a biocompatible redox couple of lactic acid and pyruvic acid on earth-abundant TiO2. The TEC cell exhibited a positive Seebeck coefficient of 1.40 mV K-1. DFT calculations figured out that the adsorption of intermediate species and protons on TiO2 controls both the redox reaction and current polarity.

10.
Alzheimers Dement (N Y) ; 7(1): e12182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095441

RESUMO

INTRODUCTION: Cilostazol may be a novel therapeutic agent for Alzheimer's disease. Its metabolite, OPC-13015, has a stronger inhibitory effect on type 3 phosphodiesterase than cilostazol. METHODS: We prospectively enrolled patients with mild cognitive impairment to whom cilostazol was newly prescribed. Patients underwent the Montreal Cognitive Assessment (MoCA) twice, at a 6-month interval. Plasma cilostazol, OPC-13015, OPC-13213, and OPC-13217 concentrations were determined using liquid chromatography-tandem mass spectrometry. RESULTS: MoCA score changes from baseline to the 6-month visit were positively correlated with ratios of OPC-13015 to cilostazol and total metabolites (n = 19, P = .005). Patients with higher ratios of OPC-13015 (≥0.18, median value; n = 10) had significantly higher MoCA scores (P = .036) than patients with lower ratios (the ratio <0.18, n = 9). The absolute value of OPC-13015 concentration in blood was also higher in patients with preserved cognitive function (P = .033). DISCUSSION: Blood OPC-13015 levels may be a predictive biomarker of cilostazol treatment for Alzheimer's disease.

11.
ACS Appl Mater Interfaces ; 13(17): 19992-20001, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33877813

RESUMO

We present a systematic study on the support effect of metal-organic frameworks (MOFs), regarding substrate adsorption. A remarkable enhancement of both catalytic activity and selectivity for the ethanol (EtOH) production reaction through acetic acid (AcOH) hydrogenation (AH) was observed on Pt nanoparticles supported on MOFs. The systematic study on catalysis using homogeneously loaded Pt catalysts, in direct contact with seven different MOF supports (MIL-125-NH2, UiO-66-NH2, HKUST-1, MIL-101, Zn-MOF-74, Mg-MOF-74, and MIL-121) (abbreviated as Pt/MOFs), found that MOFs having a high affinity for the AcOH substrate (UiO-66-NH2 and MIL-125-NH2) showed high catalytic activity for AH. This is the first demonstration indicating that the adsorption ability of MOFs directly accelerates catalytic performance using the direct contact between the metal and the MOF. In addition, Pt/MIL-125-NH2 showed a remarkably high EtOH yield (31% at 200 °C) in a fixed-bed flow reactor, which was higher by a factor of more than 8 over that observed for Pt/TiO2, which was the best Pt-based catalyst for this reaction. Infrared spectroscopy and a theoretical study suggested that the MIL-125-NH2 support plays an important role in high EtOH selectivity by suppressing the formation of the byproduct, ethyl acetate (AcOEt), due to its relatively weak adsorption behavior for EtOH rather than AcOH.

12.
Chem Commun (Camb) ; 55(98): 14721-14724, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31670353

RESUMO

Seven amino acids were electrochemically synthesized from biomass-derivable α-keto acids and NH2OH with faradaic efficiencies (FEs) of 77-99% using an earth-abundant TiO2 catalyst. Furthermore, we newly constructed a flow-type electrochemical reactor, named a "polymer electrolyte amino acid electrosynthesis cell", and achieved continuous production of alanine with an FE of 77%.


Assuntos
Aminoácidos/síntese química , Titânio/química , Alanina/síntese química , Hidróxido de Amônia/química , Biomassa , Catálise , Técnicas Eletroquímicas , Cetoácidos/química
13.
Dalton Trans ; 48(25): 9284-9290, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31162517

RESUMO

Tantalate semiconductors are potential photocatalysts for hydrogen generation via photocatalytic water splitting reaction because the conduction band of tantalates is composed of the tantalum 5d orbital, which is located at a more negative potential than that of the H+/H2 half reaction, i.e., 0.0 V vs. NHE. Bi3TaO7 is a stable tantalate under acidic or alkaline conditions, with a band gap suitable for visible light absorption. However, the photocatalytic properties of Bi3TaO7 are only reported based on the dye degradation reactions, probably due to the fast electron/hole recombination losses. 2D crystal-like nanosheets with a thickness of a few nanometers show unique features such as high carrier mobility, the quantum Hall effect, high specific surface area, and excellent electrical/thermal conductivity. 2D structures can also enhance the photocatalytic properties because photo-generated charge carriers in nanosheets are less prone to fast recombinations as compared to their bulk counterparts. In this study, nanosheets of Bi3TaO7 are produced by a liquid exfoliation method and the photocatalytic hydrogen generation reaction is investigated for both the as-synthesized Bi3TaO7 nanoparticles and Bi3TaO7 nanosheets.

14.
J Synchrotron Radiat ; 26(Pt 3): 762-773, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074441

RESUMO

An unbiased approach to correct X-ray response non-uniformity in microstrip detectors has been developed based on the statistical estimation that the scattering intensity at a fixed angle from an object is expected to be constant within the Poisson noise. Raw scattering data of SiO2 glass measured by a microstrip detector module was found to show an accuracy of 12σPN at an intensity of 106 photons, where σPN is the standard deviation according to the Poisson noise. The conventional flat-field calibration has failed in correcting the data, whereas the alternative approach used in this article successfully improved the accuracy from 12σPN to 2σPN. This approach was applied to total-scattering data measured by a gapless 15-modular detector system. The quality of the data is evaluated in terms of the Bragg reflections of Si powder, the diffuse scattering of SiO2 glass, and the atomic pair distribution function of TiO2 nanoparticles and Ni powder.

15.
Phys Chem Chem Phys ; 21(11): 5882-5889, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30865734

RESUMO

Electrochemical hydrogenation of a carboxylic acid using water as a hydrogen source is an environmentally friendly synthetic process for upgrading bio-based chemicals. We systematically studied electrochemical hydrogenation of non-aromatic carboxylic acid derivatives on anatase TiO2 by a combination of experimental analyses and density functional theory calculations, which for the first time shed light on mechanistic insights for the electrochemical hydrogenation of carboxylic acids. Development of a substrate permeable TiO2 cathode enabled construction of a flow-type electrolyser, i.e., a so-called polymer electrode alcohol synthesis cell (PEAEC) for the continuous synthesis of an alcoholic compound from a carboxylic acid. We demonstrated the highly efficient and selective conversion of oxalic acid to produce glycolic acid, which can be regarded as direct electric power storage into an easily treatable alcoholic compound.

16.
Phys Chem Chem Phys ; 21(9): 5117-5122, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30766991

RESUMO

Despite many advancements, an inexpensive ammonia synthesis catalyst free from hydrogen and nitrogen poisoning, and capable of synthesizing ammonia under mild conditions is still unknown and is long sought-after. Here we present an active nanoalloy catalyst, RuFe, formed by alloying highly active Ru and inexpensive Fe, capable of activating both N2 and H2 without blocking the surface active sites and thereby overcoming the major hurdle faced by the current best performing pure metal catalysts. This novel RuFe nanoalloy catalyst operates under milder conditions than the conventional Fe catalyst and is less expensive than the so far best performing Ru-based catalysts providing additional advantages. Most importantly, by integrating theory and experiments, we identified the underlying mechanisms responsible for lower surface poisoning of this catalyst, which will provide directions for fabricating poison-free efficient NH3 synthesis catalysts in future.

17.
Chem Sci ; 9(25): 5536-5540, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-30210762

RESUMO

We report on binary solid-solution nanoparticles (NPs) composed of Pd and Ir, which are not miscible at the equilibrium state of the bulk, for the first time, by means of a process of hydrogen absorption/desorption from core (Pd)/shell (Ir) NPs. Only 20 at% replacement with Ir atoms doubled the hydrogen-storage capability compared to Pd NPs, which are a representative hydrogen-storage material. Furthermore, the systematic control of hydrogen concentrations and the corresponding pressure in Pd and Pd-M NPs (M = Ir, Pt, Au) have been achieved based on the band filling control of Pd NPs.

18.
Sci Technol Adv Mater ; 19(1): 142-152, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511392

RESUMO

We demonstrated carbon-neutral (CN) energy circulation using glycolic acid (GC)/oxalic acid (OX) redox couple. Here, we report fundamental studies on both catalyst search for power generation process, i.e. GC oxidation, and elemental steps for fuel generation process, i.e. OX reduction, in CN cycle. The catalytic activity test on various transition metals revealed that Rh, Pd, Ir, and Pt have preferable features as a catalyst for electrochemical oxidation of GC. A carbon-supported Pt catalyst in alkaline conditions exhibited higher activity, durability, and product selectivity for electrooxidation of GC rather than those in acidic media. The kinetic study on OX reduction clearly indicated that OX reduction undergoes successive two-electron reductions to form GC. Furthermore, application of TiO2 catalysts with large specific area for electrochemical reduction of OX facilitates the selective formation of GC.

19.
Sci Rep ; 7(1): 17032, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234034

RESUMO

A liquid flow-type electrolyser that continuously produces an alcohol from a carboxylic acid was constructed by employing a polymer electrolyte, named a polymer electrolyte alcohol electrosynthesis cell (PEAEC). Glycolic acid (GC, an alcoholic compound) is generated on anatase TiO2 catalysts via four-electron reduction of oxalic acid (OX, a divalent carboxylic acid), accompanied with water oxidation, which achieves continuous electric power storage in easily stored GC. Porous anatase TiO2 directly grown on Ti mesh (TiO2/Ti-M) or Ti felt (TiO2/Ti-F) was newly fabricated as a cathode having favourable substrate diffusivity. A membrane-electrode assembly composed of the TiO2/Ti-M, Nafion 117, and an IrO2 supported on a gas-diffusion carbon electrode (IrO2/C) was applied to the PEAEC. We achieved a maximum energy conversion efficiency of 49.6% and a continuous 99.8% conversion of 1 M OX, which is an almost saturated aqueous solution at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...