Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 135(3): 238-249, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646568

RESUMO

Extracellular electron transfer materials (EETMs) in the environment, such as humic substances and biochar, are formed from the humification/heating of natural organic materials. However, the distribution of extracellular electron transfer (EET) functionality in fresh natural organic materials has not yet been explored. In the present study, we reveal the wide distribution of EET functionality in proteinaceous materials for the first time using an anaerobic pentachlorophenol dechlorinating consortium, whose activity depends on EETM. Out of 11 natural organic materials and 13 reference compounds, seven proteinaceous organic materials (albumin, beef, milk, pork, soybean, yolk, and bovine serum albumin) functioned as EETMs. Carbohydrates and lipids did not function as EETMs. Comparative spectroscopic analyses suggested that a ß-sheet secondary structure was essential for proteins to function as EETMs, regardless of water solubility. A high content of reduced sulfur was potentially involved in EET functionality. Although proteinaceous materials have thus far been considered simply as nutrients, the wide distribution of EET functionality in these materials provides new insights into their impact on biogeochemical cycles. In addition, structural information on EET functionality can provide a scientific basis for the development of eco-friendly EETMs.


Assuntos
Elétrons , Pentaclorofenol , Transporte de Elétrons , Substâncias Húmicas/análise , Pentaclorofenol/metabolismo , Análise Espectral
2.
Chemosphere ; 269: 128697, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33139048

RESUMO

The discovery of the function of humin (HM), an insoluble fraction of humic substances (HSs), as an extracellular electron mediator (EEM) in 2012 has provided insight into the role of HM in nature and its potential for in situ bioremediation of pollutants. The EEM function is thought to enable the energy network of various microorganisms using HM. Recently, a number of studies on the application of HM as EEM in anaerobic microbial cultures have been conducted. Even so, there is a need for developing a holistic view of HM EEM function. In this paper, we summarize all the available information on the properties of HM EEM function, its applications, possible redox-active structures, and the interaction between HM and microbial cells. We also suggest scopes for future HM research.


Assuntos
Elétrons , Substâncias Húmicas , Biodegradação Ambiental , Substâncias Húmicas/análise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...