Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Jpn Dent Sci Rev ; 59: 273-280, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37674899

RESUMO

Substantial evidence suggests that periodontal disease increases the risk of developing and progressing extraoral manifestations such as diabetes, atherosclerosis, rheumatoid arthritis, and inflammatory bowel disease. The most probable causative mechanism behind this is the influx of bacteria and/or bacterial products (endotoxin) and inflammatory cytokines into the systemic circulation originating from inflamed periodontal tissues. However, recent studies have revealed that oral bacteria, especially periodontopathic bacteria, play a role in inducing dysbiosis of the gut microbiota resulting induction of gut dysbiosis-related pathology associated with systemic diseases. Conversely, the disruption of gut microbiota has been shown to have a negative impact on the pathogenesis of periodontal disease. Based on our study findings and the available literature, this review presents an overview of the relationship between periodontal disease and systemic health, highlighting the mouth-gut connection.

2.
J Oral Microbiol ; 14(1): 2110194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966937

RESUMO

Background: The effect of oral microbiota on the intestinal microbiota has garnered growing attention as a mechanism linking periodontal diseases to systemic diseases. However, the salivary microbiota is diverse and comprises numerous bacteria with a largely similar composition in healthy individuals and periodontitis patients. Aim: We explored how health-associated and periodontitis-associated salivary microbiota differently colonized the intestine and their subsequent systemic effects. Methods: The salivary microbiota was collected from a healthy individual and a periodontitis patient and gavaged into C57BL/6NJcl[GF] mice. Gut microbial communities, hepatic gene expression profiles, and serum metabolites were analyzed. Results: The gut microbial composition was significantly different between periodontitis-associated microbiota-administered (PAO) and health-associated oral microbiota-administered (HAO) mice. The hepatic gene expression profile demonstrated a distinct pattern between the two groups, with higher expression of lipid and glucose metabolism-related genes. Disease-associated metabolites such as 2-hydroxyisobutyric acid and hydroxybenzoic acid were elevated in PAO mice. These metabolites were significantly correlated with characteristic gut microbial taxa in PAO mice. Conversely, health-associated oral microbiota were associated with higher levels of beneficial serum metabolites in HAO mice. Conclusion: The multi-omics approach used in this study revealed that periodontitis-associated oral microbiota is associated with the induction of disease phenotype when they colonized the gut of germ-free mice.

3.
Front Immunol ; 12: 766170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707622

RESUMO

Background & Aims: Periodontitis increases the risk of nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanisms are unclear. Here, we show that gut dysbiosis induced by oral administration of Porphyromonas gingivalis, a representative periodontopathic bacterium, is involved in the aggravation of NAFLD pathology. Methods: C57BL/6N mice were administered either vehicle, P. gingivalis, or Prevotella intermedia, another periodontopathic bacterium with weaker periodontal pathogenicity, followed by feeding on a choline-deficient, l-amino acid-defined, high-fat diet with 60 kcal% fat and 0.1% methionine (CDAHFD60). The gut microbial communities were analyzed by pyrosequencing the 16S ribosomal RNA genes. Metagenomic analysis was used to determine the relative abundance of the Kyoto Encyclopedia of Genes and Genomes pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance-based metabolomics coupled with multivariate statistical analyses. Hepatic gene expression profiles were analyzed via DNA microarray and quantitative polymerase chain reaction. Results: CDAHFD60 feeding induced hepatic steatosis, and in combination with bacterial administration, it further aggravated NAFLD pathology, thereby increasing fibrosis. Gene expression analysis of liver samples revealed that genes involved in NAFLD pathology were perturbed, and the two bacteria induced distinct expression profiles. This might be due to quantitative and qualitative differences in the influx of bacterial products in the gut because the serum endotoxin levels, compositions of the gut microbiota, and serum metabolite profiles induced by the ingested P. intermedia and P. gingivalis were different. Conclusions: Swallowed periodontopathic bacteria aggravate NAFLD pathology, likely due to dysregulation of gene expression by inducing gut dysbiosis and subsequent influx of gut bacteria and/or bacterial products.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/microbiologia , Porphyromonas gingivalis , Prevotella intermedia , Administração Oral , Animais , Deficiência de Colina , Dieta Hiperlipídica , Fezes/microbiologia , Células Hep G2 , Humanos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Ribossômico 16S
4.
mBio ; 12(3): e0077121, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061595

RESUMO

Obesity is a risk factor for periodontal disease (PD). Initiation and progression of PD are modulated by complex interactions between oral dysbiosis and host responses. Although obesity is associated with increased susceptibility to bacterial infection, the detailed mechanisms that connect obesity and susceptibility to PD remain elusive. Using fecal microbiota transplantation and a ligature-induced PD model, we demonstrated that gut dysbiosis-associated metabolites from high-fat diet (HFD)-fed mice worsen alveolar bone destruction. Fecal metabolomics revealed elevated purine degradation pathway activity in HFD-fed mice, and recipient mice had elevated levels of serum uric acid upon PD induction. Furthermore, PD induction caused more severe bone destruction in hyperuricemic than normouricemic mice, and the worsened bone destruction was completely abrogated by allopurinol, a xanthine oxidase inhibitor. Thus, obesity increases the risk of PD by increasing production of uric acid mediated by gut dysbiosis. IMPORTANCE Obesity is an epidemic health issue with a rapid increase worldwide. It increases the risk of various diseases, including periodontal disease, an oral chronic infectious disease. Although obesity increases susceptibility to bacterial infection, the precise biological mechanisms that link obesity and susceptibility to periodontal disease remain elusive. Using fecal microbial transplantation, experimental periodontitis, and metabolomics, our study demonstrates uric acid as a causative substance for greater aggravation of alveolar bone destruction in obesity-related periodontal disease. Gut microbiota from obese mice upregulated the purine degradation pathway, and the resulting elevation of serum uric acid promoted alveolar bone destruction. The effect of uric acid was confirmed by administration of allopurinol, an inhibitor of xanthine oxidase. Overall, our study provides new insights into the pathogenic mechanisms of obesity-associated periodontal disease and the development of new therapeutic options for the disease.


Assuntos
Perda do Osso Alveolar/etiologia , Microbioma Gastrointestinal , Obesidade/microbiologia , Periodontite/microbiologia , Ácido Úrico/metabolismo , Perda do Osso Alveolar/patologia , Animais , Dieta Hiperlipídica , Disbiose , Transplante de Microbiota Fecal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Periodontite/etiologia , Fatores de Risco , Ácido Úrico/análise
5.
J Periodontal Res ; 56(2): 275-288, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33512709

RESUMO

OBJECTIVE: This study aimed to evaluate the effects of ingested periodontal pathogens on experimental colitis in mice and to elucidate its underlying mechanisms. BACKGROUND: Inflammatory bowel disease (IBD) is defined as a chronic intestinal inflammation that results in damage to the gastrointestinal tract. Epidemiological studies have shown an association between IBD and periodontitis. Although a large number of ingested oral bacteria reach gastrointestinal tract constantly, the effect of ingested periodontal pathogens on intestinal inflammation is still unknown. METHODS: Experimental colitis was induced by inclusion of dextran sodium sulfate solution in drinking water of the mice. Major periodontal pathogens (Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum) were administered orally every day during the experiment. The severity of colitis between the groups was compared. In vitro studies of the intestinal epithelial cell line were conducted to explore the molecular mechanisms by which periodontal pathogens affect the development of colitis. RESULTS: The oral administration of P. gingivalis significantly increased the severity of colitis when compared to other pathogens in the DSS-induced colitis model. The ingested P. gingivalis disrupted the colonic epithelial barrier by decreasing the expression of tight junction proteins in vivo. In vitro permeability assays using the intestinal epithelial cell line suggested the P. gingivalis-specific epithelial barrier disruption. The possible involvement of gingipains in the exacerbation of colitis was implied by using P. gingivalis lacking gingipains. CONCLUSION: Porphyromonas gingivalis exacerbates gastrointestinal inflammation by directly interacting with the intestinal epithelial barrier in a susceptible host.


Assuntos
Colite , Porphyromonas gingivalis , Animais , Colite/induzido quimicamente , Colite/complicações , Ingestão de Alimentos , Fusobacterium nucleatum , Camundongos , Camundongos Endogâmicos C57BL , Prevotella intermedia
6.
Arch Oral Biol ; 121: 104956, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157493

RESUMO

OBJECTIVE: Rice peptide has antibacterial properties that have been tested in planktonic bacterial culture. However, bacteria form biofilm at disease sites and are resistant to antibacterial agents. The aim of this study was to clarify the mechanisms of action of rice peptide and its amino acid substitution against periodontopathic bacteria and their antibiofilm effects. DESIGN: Porphyromonas gingivalis and Fusobacterium nucleatum were treated with AmyI-1-18 rice peptide or its arginine-substituted analog, G12R, under anaerobic conditions. The amount of biofilm was evaluated by crystal violet staining. The integrity of the bacteria cytoplasmic membrane was studied in a propidium iodide (PI) stain assay and transmission electron microscopy (TEM). RESULTS: Both AmyI-1-18 and G12R inhibited biofilm formation of P. gingivalis and F. nucleatum; in particular, G12R inhibited F. nucleatum at lower concentrations. However, neither peptide eradicated established biofilms significantly. According to the minimum inhibitory concentration and minimum bactericidal concentration against P. gingivalis, AmyI-1-18 has bacteriostatic properties and G12R has bactericidal activity, and both peptides showed bactericidal activity against F. nucleatum. PI staining and TEM analysis indicated that membrane disruption by G12R was enhanced, which suggests that the replacement amino acid reinforced the electostatic interaction between the peptide and bacteria by increase of cationic charge and α-helix content. CONCLUSIONS: Rice peptide inhibited biofilm formation of P. gingivalis and F. nucleatum, and bactericidal activity via membrane destruction was enhanced by amino acid substitution.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Oryza/química , Peptídeos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Substituição de Aminoácidos , Fusobacterium nucleatum/crescimento & desenvolvimento , Proteínas de Plantas/farmacologia , Porphyromonas gingivalis/crescimento & desenvolvimento
7.
Dent J (Basel) ; 8(4)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121117

RESUMO

The aim of this study was to examine the effect of adjunct local minocycline administration on the microbiological parameters of subgingival plaque samples in the residual periodontal pockets. Ten chronic periodontitis patients under a supportive periodontal therapy regimen were recruited. After subgingival debridement, either 2% minocycline gel, Periocline™, (Test Group) or a placebo (Control Group) was administered to the selected sites once a week for three weeks. Subgingival plaque was collected at baseline, and at four weeks and eight weeks. The microbiological composition was analyzed by 16S ribosomal RNA sequencing. In the Test Group, α-diversity (evenness) decreased compared to the baseline (p = 0.005) and was lower compared to the control group at four weeks (p = 0.003). The microbial community composition between the two groups was significantly different at four weeks (p = 0.029). These changes were attributable to a decrease in the bacteria associated with periodontitis and an increase in the bacteria associated with periodontal health. Additionally, the improvement in bleeding on probing continued at eight weeks; however, there were little microbial effects of 2% minocycline gel observed at eight weeks. The control group demonstrated no change throughout the eight-week experimental period. Thus, local minocycline administration can change the subgingival microbial community of residual periodontal pockets.

8.
Molecules ; 25(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365716

RESUMO

BACKGROUND: Gut microbiota plays a pivotal role in regulating host metabolism that affects the systemic health. To date, several studies have confirmed the fact that microbiota interacts with host, modulating immunity, controlling the homeostasis environment, and maintaining systemic condition. Recent studies have focused on the protective function of poly unsaturated fatty acids, 10-oxo-trans-11-oxadecenoic acid (KetoC) and 10-hydroxy-cis-12-octadecenoic acid (HYA), generated by gut microbiota on periodontal disease. Nevertheless, the mechanism remains unclear as investigations are limited to in vivo and in vitro studies. In this present review, we found that the administration of metabolites, KetoC and HYA, by a probiotic gut microbiota Lactobacillus plantarum from linoleic acid is found to inhibit the oxidation process, possess an antimicrobial function, and prevent the inflammation. These findings suggest the promising use of functional lipids for human health. CONCLUSION: Protective modalities of bioactive metabolites may support periodontal therapy by suppressing bacterial dysbiosis and regulating periodontal homeostasis in the clinical setting.


Assuntos
Produtos Biológicos/farmacologia , Lactobacillus/metabolismo , Periodonto/efeitos dos fármacos , Produtos Biológicos/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Estrutura Molecular , Higiene Bucal , Doenças Periodontais/tratamento farmacológico , Doenças Periodontais/etiologia , Metabolismo Secundário
9.
Microb Pathog ; 140: 103962, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31904448

RESUMO

BACKGROUND AND OBJECTIVES: Recent evidence suggests that oral bacteria can affect extra-oral diseases by modulating aspects of the gut environment such as the microbiome, metabolome, and immune profiles. However, differences in the effects of different types of oral bacteria, particularly periodontopathic and health-associated bacteria, remain elusive. MATERIALS AND METHODS: Five-week-old germ-free mice were orally administered with either periodontopathic bacteria as oral pathobionts (Porphyromonas gingivalis, Filifactor alocis, and Fusobacterium nucleatum) or bacteria associated with periodontal health (Actinomyces naeslundii, Streptococcus mitis, and Veillonella rogosae) twice a week for five weeks. The presence of all bacterial species in the feces and the livers of the mice was analyzed via polymerase chain reaction (PCR), using specific primers for 16S rRNA genes. Alveolar bone resorption was evaluated histologically. The expression profiles of various genes in the liver and small intestine were analyzed using real-time PCR. Sera were analyzed to determine the levels of antibodies and endotoxin. The proportions of T helper 17 (Th17) and regulatory T (Treg) cells in mesenteric lymph nodes and Peyer's patches were analyzed using flow cytometry. RESULTS: Neither of the types of bacteria administered in this experiment induced alveolar bone resorption. All bacteria elicited some degree of systemic antibody response in the mice, although the response to S. mitis was not obvious. The response to P. gingivalis and V. rogosae was strongest. Generally, the health-associated bacteria but not the periodontitis-associated bacteria were detected in fecal samples. Interestingly, only Fusobacterium nucleatum DNA was detected in the liver, despite that live Fusobacterium nucleatum were not detected in the liver. The levels of interleukin-17 in the intestine and genes related to lipid accumulation in the liver were significantly higher in the mice that received periodontitis-associated bacteria. In addition, expression of the gene associated with endoplasmic reticulum stress was higher and that of the gene controlling circadian rhythm was lower in the periodontitis group. There was no difference in serum endotoxin, T-cell phenotypes in the lymphatic tissues, or genes related to the gut barrier. CONCLUSION: Oral administration of periodontitis-associated bacteria can induce pathological changes in the liver and intestine that are implicated in the process of periodontitis. These findings further support the importance of the oral-gut connection.


Assuntos
Boca/microbiologia , Periodontite/microbiologia , Simbiose , Actinomyces/fisiologia , Animais , Clostridiales/fisiologia , Feminino , Fusobacterium nucleatum/fisiologia , Vida Livre de Germes , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Intestinos/imunologia , Fígado/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Periodontite/genética , Periodontite/imunologia , Porphyromonas gingivalis/fisiologia , Streptococcus mitis/fisiologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Veillonella/fisiologia
10.
Arch Oral Biol ; 110: 104602, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31734544

RESUMO

OBJECTIVE: Oxidative stress, which is defined as an imbalance between pro-oxidant and antioxidant systems, has been implicated in the development and/or progression of several inflammatory diseases, including periodontal disease. The reactive oxygen species (ROS) are the primary inducers of oxidative stress. In the induction of cytoprotective enzymes, the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling in antioxidant systems takes a main role. Notably, 10-oxo-trans-11-octadecenoic acid (KetoC), known as a bioactive metabolite generated by intestinal microorganisms, has been reported to have beneficial effects on several biological responses. Therefore, we investigated the antioxidant effect of KetoC on gingival epithelial cells (GECs) in this present study. METHODS: An SV40-T antigen-transformed human gingival epithelial cell line (Epi4) was used for experiments. The alteration of anti-oxidative stress related genes was analyzed by qPCR. The cellular ROS levels were evaluated by flow cytometry. To explore its molecular mechanisms, ARE promotor activity was analyzed by luciferase assay; the involvement of mitogen-activated protein kinase (MAPK) and G protein-coupled receptor 120 (GPR120) were evaluated by Western blotting and luciferase assay, respectively. RESULTS: KetoC significantly increased the expression of antioxidant-related genes in GECs. The level of ROS was significantly inhibited by the pretreatment of KetoC. Extracellular signal-regulated kinase (ERK) phosphorylation by KetoC promoted both the nuclear translocation of Nrf2 and its binding to the ARE in GECs. Further, GPR120 regulated the activation of KetoC induced-Nrf2-ARE signaling. CONCLUSION: KetoC exerts a protective function against the oxidative stress in GECs through GPR120-dependent ERK-Nrf2-ARE signaling.


Assuntos
Elementos de Resposta Antioxidante , Gengiva , Ácidos Linoleicos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Antioxidantes , Células Epiteliais , Gengiva/citologia , Gengiva/metabolismo , Humanos , Ácidos Linoleicos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio
11.
Sci Rep ; 9(1): 20031, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882624

RESUMO

Porphyromonas gingivalis infection can lead to periodontitis and dysbiosis, which are known risk factors for rheumatoid arthritis (RA). We investigated whether P. gingivalis administration affected bone regeneration in mice with or without arthritis. We administered P. gingivalis to male DBA/1 J mice that were or were not sensitised to type II collagen-induced arthritis (CIA). All mice underwent drilling of bilateral femurs. We histologically evaluated new bone regeneration (bone volume of the defect [BVd]/tissue volume of the defect [TVd]) using micro-computed tomography (micro-CT), osteoclast number/bone area, and active osteoblast surface/bone surface (Ob.S/BS). We measured serum cytokine levels and bone mineral density of the proximal tibia using micro-CT. CIA resulted in significantly reduced bone regeneration (BVd/TVd) at all time-points, whereas P. gingivalis administration showed similar effects at 2 weeks postoperatively. CIA resulted in higher osteoclast number/bone area and lower Ob.S/BS at 2 and 3 weeks postoperatively, respectively. However, P. gingivalis administration resulted in lower Ob.S/BS only at 2 weeks postoperatively. During later-stage bone regeneration, CIA and P. gingivalis administration synergistically decreased BVd/TVd, increased serum tumour necrosis factor-α, and resulted in the lowest bone mineral density. Therefore, RA and dysbiosis could be risk factors for prolonged fracture healing.


Assuntos
Artrite Experimental/prevenção & controle , Regeneração Óssea , Fêmur/patologia , Porphyromonas gingivalis , Animais , Densidade Óssea , Masculino , Camundongos , Microtomografia por Raio-X
12.
Tissue Barriers ; 7(3): e1651158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31389292

RESUMO

The gingival epithelium acts as a physical barrier to separate the biofilm from the gingival tissue, providing the first line of defense against bacterial invasion in periodontal disease. Disruption of the gingival epithelial barrier, and the subsequent penetration of exogenous pathogens into the host tissues, triggers an inflammatory response, establishing chronic infection. Currently, more than 700 different bacterial species have been identified in the oral cavity, some of which are known to be periodontopathic. These bacteria contribute to epithelial barrier dysfunction in the gingiva by producing several virulence factors. However, some bacteria in the oral cavity appear to be beneficial, helping gingival epithelial cells maintain their integrity and barrier function. This review aims to discuss current findings regarding microorganism interactions and epithelial barrier function in the oral cavity, with reference to investigations in the gut, where this interaction has been extensively studied.


Assuntos
Células Epiteliais/metabolismo , Epitélio/fisiopatologia , Gengiva/patologia , Doenças Periodontais/fisiopatologia , Junções Íntimas/metabolismo , Células Cultivadas , Humanos
13.
Arch Oral Biol ; 105: 72-80, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31288144

RESUMO

OBJECTIVE: To highlight the shifting paradigm of periodontitis, describe mechanism of periodontal bone destruction, and propose an updated host modulation therapy (HMT) strategy. To add further clinical relevance, related studies investigating the efficacy of several HMT agents in periodontitis will be discussed. DESIGN: Literature searches were conducted from articles published in PubMed using keywords "periodontal disease AND periodontitis AND host modulation therapy AND anti-inflammatory AND antioxidant", and then the findings were comprehensively summarized and elaborated. RESULT: Accumulating evidence indicates that periodontitis is no longer defined solely as a pathogen-induced disease; rather, it is now recognized as a consequence of uncontrolled immune response and oxidative stress leading to periodontal tissue damage. Although periodontopathic bacteria initiate the disease, inflammation and oxidative stress were reported to be the main causes for the severity of tissue destruction. Thus, since the concept of periodontitis has shifted, our approach to its management needs to be adjusted to accommodate the latest paradigm. Nowadays, the modulation of inflammation and oxidative stress is considered a target of HMT. HMT agents, such as probiotics, anti-inflammatory drugs, anti-chemokines, lipid mediators, and bio-active fatty acids, have been extensively investigated for their remarkable functions in modulating the immune response and providing antioxidant effects. CONCLUSION: Findings from in vitro, in vivo, and human studies frequently demonstrate positive association by the administration of HMT in periodontitis. HMT strategy targeted on anti-inflammatory and antioxidant in periodontitis might serve as an excellent therapeutic approach to reach the level of clinical benefit.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Imunomodulação , Periodontite/tratamento farmacológico , Humanos , Inflamação
14.
J Periodontol ; 90(12): 1470-1480, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31343074

RESUMO

BACKGROUND: The bioactive metabolite KetoC, generated by intestinal bacteria, exerts various beneficial effects. Nevertheless, its function in the pathogenesis of periodontitis remains unclear. Here, we investigated the effect of KetoC in a mouse model of periodontitis and explored the underlying mechanism. METHODS: Thirty-one 8-week-old male C57BL/6N mice were randomly divided into four groups (non-ligation, non-ligation + KetoC, ligation + Porphyromonas gingivalis, and ligation + P. gingivalis + KetoC) (n = 7/8 mice/group) and given a daily oral gavage of KetoC (15 mg/mL) or vehicle for 2 weeks. To induce periodontitis, a 5-0 silk ligature was placed on the maxillary left second molar on day 7, and P. gingivalis W83 (109 colony-forming unit [CFU]) was administered orally every 3 days. On day 14, all mice were euthanized. Alveolar bone destruction was determined from the level of the cemento-enamel junction to the alveolar bone crest. Moreover, bone loss level was confirmed from gingival tissue sections stained with hematoxylin and eosin. The presence of P. gingivalis was quantified using real-time polymerase chain reaction. In vitro, the bacteriostatic and bactericidal effects of KetoC were assessed by analyzing its suppressive activity on the proliferation of P. gingivalis and using a live/dead bacterial staining kit, respectively. A double-bond-deficient metabolite (KetoB) was then used to investigate the importance of double-bond structure in the antimicrobial activity of KetoC on P. gingivalis. RESULTS: In vivo, KetoC attenuated alveolar bone destruction and suppressed P. gingivalis in the periodontitis group. In vitro, KetoC (but not KetoB) downregulated the proliferation and viability of P. gingivalis in a dose-dependent manner. CONCLUSIONS: KetoC reduced alveolar bone destruction in a periodontitis model via its antimicrobial function. Therefore, this bioactive metabolite may be valuable in clinical applications to support periodontal therapy.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Antibacterianos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Porphyromonas gingivalis
15.
Int J Dent ; 2019: 1394678, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31015837

RESUMO

OBJECTIVES: Several serum biomarkers have been reported to increase in periodontitis patients as possible mediators linking periodontal inflammation to systemic diseases. However, the relationship between periodontitis and urine biomarkers is still unclear. The aim of this cross-sectional study was to investigate potential urine biomarkers of periodontitis in a Japanese population. MATERIALS AND METHODS: This study included 108 male subjects, and microbiological and clinical parameters were evaluated as a periodontitis marker. The correlation between nine urine biomarkers (typically used to diagnose kidney disease) and periodontal parameters was analyzed. Based on the findings, ß 2-microglobulin (ß 2-MG) and neutrophil gelatinase-associated lipocalin (NGAL) were selected for comparison and multivariate regression analysis, and the Kruskal-Wallis test followed by Bonferroni correction was used to identify differences in their concentrations between the three periodontitis groups (severe, moderate, and no/mild periodontitis). RESULTS: ß 2-MG and NGAL exhibited a significant correlation with clinical parameters of periodontitis. The prevalence of clinical parameters such as bleeding on probing and number of sites with probing depth (PD) ≥ 6 mm were greater in the ß 2-MG high group (≥300 µg/g creatinine) than in the normal group (P=0.017 and 0.019, respectively). Multivariate regression analysis indicated that the number of sites with PD ≥ 6 mm was independently associated with urine ß 2-MG. Moreover, the number of sites with the clinical attachment level (CAL) ≥ 6 mm was greater in the NGAL high group (highest quartile) (P=0.041). Multivariate regression analysis showed that the number of sites with CAL ≥ 6 mm was associated independently with urine NGAL. Finally, ß 2-MG was significantly higher in the severe periodontitis subjects compared to the no/mild periodontitis subjects. CONCLUSION: The significant association between urine ß 2-MG or NGAL and periodontitis was revealed. These biomarkers can potentially be used to screen for or diagnose periodontitis. This trial is registered with the UMIN Clinical Trials Registry UMIN000013485.

16.
J Periodontol ; 90(10): 1160-1169, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31032912

RESUMO

BACKGROUND: Periodontitis is an inflammatory disease that results in alveolar bone resorption due to inflammatory cytokine production induced by bacterial antigens such as lipopolysaccharides (LPS). Here, the preventive effect of the Amyl-1-18 peptide derived from rice in an experimental model of periodontitis and the effect on the anti-inflammatory response were assessed. METHODS: Alveolar bone resorption, gene transcription of proinflammatory cytokines in the gingiva, and the endotoxin level in the oral cavity were evaluated after oral administration of the Amyl-1-18 peptide for 14 days using a ligature-induced periodontitis model in mice. Additionally, murine macrophages were incubated with LPS of Escherichia coli or Porphyromonas gingivalis in the presence of Amyl-1-18 to analyze the suppressive effects of Amyl-1-18 on the cell signaling pathways associated with proinflammatory cytokine production, including inflammasome activities. RESULTS: Oral administration of Amyl-1-18 suppressed alveolar bone resorption and gene transcription of interleukin (il)6 in the gingiva of the periodontitis model, and decreased endotoxin levels in the oral cavity, suggesting modulation of periodontal inflammation by inhibition of endotoxin activities in vivo. Also, Amyl-1-18 suppressed IL-6 production induced by LPS and recombinant IL-1ß in macrophages in vitro but had no effect on inflammasome activity. CONCLUSIONS: The Amyl-1-18 peptide from rice inhibited alveolar bone destruction in mouse periodontitis model via suppressing inflammatory cytokine production induced by LPS. It was suggested that Amyl-1-18 peptide has anti-inflammatory property against LPS, not only by neutralization of LPS and subsequent inhibition of nuclear factor-κB signaling but also by inhibition of the IL-1R-related signaling cascade.


Assuntos
Perda do Osso Alveolar , Oryza , Periodontite , Animais , Citocinas , Lipopolissacarídeos , Camundongos , Porphyromonas gingivalis
18.
J Oral Microbiol ; 11(1): 1586422, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911359

RESUMO

Oral bacteria spreading through the body have been associated with a number of systemic diseases. The gut is no exception. Studies in animals and man have indicated that oral bacteria can translocate to the gut and change its microbiota and possibly immune defense. The ectopic displacement of oral bacteria particularly occurs in severe systemic diseases, but also in patients with "chronic" periodontitis. Thus, Porphyromonas gingivalis, which creates dysbiosis in the subgingival microbiota and immune defense, may also cause dysregulation in the gut. A dysbiotic gut microbiota may cause diseases elsewhere in the body. The fact that "chronic" periodontitis may affect the gut microbiota could imply that consideration might in the future be given to a coordinated approach to the treatment of periodontitis and gastrointestinal disease. This area of investigation, which is in its infancy, may represent another pathway for oral bacteria to cause systemic diseases and deserves more research.

19.
Heliyon ; 5(1): e01111, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30671557

RESUMO

Pro-protein convertase subtilisin/kexin type 9 (PCSK9), a secreted serine protease, regulates serum low-density lipoprotein (LDL) cholesterol levels by targeting the degradation of LDL receptor (LDLR) in the liver. Although previous reports describe elevated levels of PCSK9 in patients with periodontitis, the mechanisms that trigger this increase in serum PCSK9 levels and induce the related inflammatory response remain unclear. In an unc93b1-deficient mouse of Porphyromonas gingivalis infection, nucleic acid antigen recognition via Toll-like receptors was found to promote PCSK9 production, suggesting an indirect role for tumor necrosis factor-α as an inducer of PCSK9 in contrast to that reported in previous studies. Furthermore, PCSK9 production was independent of the TIR domain-containing adapter-inducing interferon-ß-dependent signaling pathway. These results indicate that changes in LDLR expression precede an increase in the serum PCSK9 level in the context of an infectious disease such as periodontitis.

20.
mSphere ; 3(5)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333180

RESUMO

Periodontal disease induced by periodontopathic bacteria like Porphyromonas gingivalis is demonstrated to increase the risk of metabolic, inflammatory, and autoimmune disorders. Although precise mechanisms for this connection have not been elucidated, we have proposed mechanisms by which orally administered periodontopathic bacteria might induce changes in gut microbiota composition, barrier function, and immune system, resulting in an increased risk of diseases characterized by low-grade systemic inflammation. Accumulating evidence suggests a profound effect of altered gut metabolite profiles on overall host health. Therefore, it is possible that P. gingivalis can affect these metabolites. To test this, C57BL/6 mice were administered with P. gingivalis W83 orally twice a week for 5 weeks and compared with sham-inoculated mice. The gut microbial communities were analyzed by pyrosequencing the 16S rRNA genes. Inferred metagenomic analysis was used to determine the relative abundance of KEGG pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analyses. Oral administration of P. gingivalis induced a change in gut microbiota composition. The distributions of metabolic pathways differed between the two groups, including those related to amino acid metabolism and, in particular, the genes for phenylalanine, tyrosine, and tryptophan biosynthesis. Also, alanine, glutamine, histidine, tyrosine, and phenylalanine were significantly increased in the serum of P. gingivalis-administered mice. In addition to altering immune modulation and gut barrier function, oral administration of P. gingivalis affects the host's metabolic profile. This supports our hypothesis regarding a gut-mediated systemic pathology resulting from periodontal disease.IMPORTANCE Increasing evidence suggest that alterations of the gut microbiome underlie metabolic disease pathology by modulating gut metabolite profiles. We have shown that orally administered Porphyromonas gingivalis, a representative periodontopathic bacterium, alters the gut microbiome; that may be a novel mechanism by which periodontitis increases the risk of various diseases. Given the association between periodontal disease and metabolic diseases, it is possible that P. gingivalis can affect the metabolites. Metabolite profiling analysis demonstrated that several amino acids related to a risk of developing diabetes and obesity were elevated in P. gingivalis-administered mice. Our results revealed that the increased risk of various diseases by P. gingivalis might be mediated at least in part by alteration of metabolic profiles. The findings should add new insights into potential links between periodontal disease and systemic disease for investigators in periodontal disease and also for investigators in the field of other diseases, such as metabolic diseases.


Assuntos
Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Doenças Metabólicas/microbiologia , Doenças Periodontais/complicações , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/patogenicidade , Administração Oral , Animais , Fezes/microbiologia , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Soro/metabolismo , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...