Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(7): 3471-3484, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38872243

RESUMO

Oligonucleotides are short nucleic acids that serve as one of the most promising classes of drug modality. However, attempts to establish a physicochemical evaluation platform of oligonucleotides for acquiring a comprehensive view of their properties have been limited. As the chemical stability and the efficacy as well as the solution properties at a high concentration should be related to their higher-order structure and intra-/intermolecular interactions, their detailed understanding enables effective formulation development. Here, the higher-order structure and the thermodynamic stability of the thrombin-binding aptamer (TBA) and four modified TBAs, which have similar sequences but were expected to have different higher-order structures, were evaluated using ultraviolet spectroscopy (UV), circular dichroism (CD), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). Then, the relationship between the higher-order structure and the solution properties including solubility, viscosity, and stability was investigated. The impact of the higher-order structure on the antithrombin activity was also confirmed. The higher-order structure and intra-/intermolecular interactions of the oligonucleotides were affected by types of buffers because of different potassium concentrations, which are crucial for the formation of the G-quadruplex structure. Consequently, solution properties, such as solubility and viscosity, chemical stability, and antithrombin activity, were also influenced. Each instrumental analysis had a complemental role in investigating the higher-order structure of TBA and modified TBAs. The utility of each physicochemical characterization method during the preclinical developmental stages is also discussed.


Assuntos
Aptâmeros de Nucleotídeos , Dicroísmo Circular , Oligonucleotídeos , Aptâmeros de Nucleotídeos/química , Dicroísmo Circular/métodos , Oligonucleotídeos/química , Varredura Diferencial de Calorimetria/métodos , Viscosidade , Espectroscopia de Ressonância Magnética/métodos , Solubilidade , Termodinâmica , Quadruplex G , Estabilidade de Medicamentos , Humanos
2.
Vaccines (Basel) ; 12(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932378

RESUMO

Oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanosine (CpG) motifs are readily recognized by Toll-like receptor 9 on immune cells, trigger an immunomodulatory cascade, induce a Th1 -biased immune milieu, and have great potential as an adjuvant in cancer vaccines. In this study, a green one-step synthesis process was adopted to prepare an amino-rich metal-organic nanoplatform (FN). The synthesized FN nanoplatform can simultaneously and effectively load model tumor antigens (OVA)/autologous tumor antigens (dLLC) and immunostimulatory CpG ODNs with an unmodified PD backbone and a guanine quadruplex structure to obtain various cancer vaccines. The FN nanoplatform and immunostimulatory CpG ODNs generate synergistic effects to enhance the immunogenicity of different antigens and inhibit the growth of established and distant tumors in both the murine E.G7-OVA lymphoma model and the murine Lewis lung carcinoma model. In the E.G7-OVA lymphoma model, vaccination efficiently increases the CD4+, CD8+, and tetramer+CD8+ T cell populations in the spleens. In the Lewis lung carcinoma model, vaccination efficiently increases the CD3+CD4+ and CD3+CD8+ T cell populations in the spleens and CD3+CD8+, CD3-CD8+, and CD11b+CD80+ cell populations in the tumors, suggesting the alteration of tumor microenvironments from cold to hot tumors.

3.
Tuberculosis (Edinb) ; 146: 102498, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461765

RESUMO

Drug resistance to tuberculosis (TB) has become an obstacle in eliminating tuberculosis. The transmission of drug-resistant TB from patients increases the incidence of primary drug-resistant (DR) TB in individuals who are in close contact. Therefore, it is necessary to incorporate an immunological approach into preventive therapy. This study focuses on the activity of lysosomal enzymes, oxygen bursts, and the attachment ability of macrophages among individuals diagnosed with active drug-resistant TB compared with close contacts with latent TB or healthy cases. We measured macrophage oxygen burst ability (Water-soluble tetrazolium salt (WST) test, Nitric Oxide production, and myeloperoxidase activity) and the degradative ability of lysosomes (activity of the ß-glucuronidase and acid phosphatase enzymes). Six active DR-TB patients and 18 close-contact cases (8 Latent Tuberculosis Infection (LTBI); 10 healthy) were recruited at Universitas Indonesia Hospital. The macrophage attachment of the LTBI group was higher than in the other groups. NO production, myeloperoxidase activity, ß-glucuronidase, and acid phosphatase were higher in the active DR-TB group. A negative correlation was uncovered between phagocytosis and NO production, myeloperoxidase activity, and lysosomal enzymes. The difference in macrophage function is expected to be a further reference in active DR-TB treatment or preventive therapy.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Macrófagos , Glucuronidase , Óxido Nítrico , Fosfatase Ácida , Peroxidase
4.
Biochem Biophys Res Commun ; 686: 149179, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-37922572

RESUMO

Direct delivery of genome-editing proteins into plant tissues could be useful in obtaining DNA-free genome-edited crops obviating the need for backcrossing to remove vector-derived DNA from the host genome as in the case of genetically modified organisms generated using DNA vector. Previously, we successfully delivered Cas9 ribonucleoprotein (RNP) into plant tissue by inserting microneedle array (MNA) physisorbed with Cas9 RNPs. Here, to enhance protein delivery and improve genome-editing efficiency, we introduced a bioactive polymer DMA/HPA/NHS modification to the MNA, which allowed strong bonding between the proteins and MNA. Compared with other modifying agents, this MNA modification resulted in better release of immobilized protein in a plant cytosol-mimicking environment. The delivery of Cas9 RNPs in Arabidopsis thaliana reporter plants was improved from 4 out of 17 leaf tissues when using unmodified MNAs to 9 out of 17 when using the polymer-modified MNAs. Further improvements in delivery efficiency can be envisaged by optimizing the polymer modification conditions, which could have significant implications for the development of more effective plant genome editing techniques.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Citosol/metabolismo , Preparações de Ação Retardada , DNA , Genoma de Planta/genética
5.
Biomolecules ; 13(11)2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-38002321

RESUMO

Cationic liposomes, specifically 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) liposomes, serve as successful carriers for guanine-quadruplex (G4) structure-based cytosine-guanine oligodeoxynucleotides (CpG ODNs). The combined benefits of CpG ODNs forming a G4 structure and a non-viral vector carrier endow the ensuing complex with promising adjuvant properties. Although G4-CpG ODN-DOTAP complexes show a higher immunostimulatory effect than naked G4-CpG ODNs, the effects of the complex composition, especially charge ratios, on the production of the pro-inflammatory cytokines interleukin (IL)-6 and interferon (IFN)-α remain unclear. Here, we examined whether charge ratios drive the bifurcation of cytokine inductions in human peripheral blood mononuclear cells. Linear CpG ODN-DOTAP liposome complexes formed micrometer-sized positively charged agglomerates; G4-CpG ODN-DOTAP liposome complexes with low charge ratios (0.5 and 1.5) formed ~250 nm-sized negatively charged complexes. Notably, low-charge-ratio (0.5 and 1.5) complexes induced significantly higher IL-6 and IFN-α levels simultaneously than high-charge-ratio (2 and 2.5) complexes. Moreover, confocal microscopy indicated a positive correlation between the cellular uptake of the complex and amount of cytokine induced. The observed effects of charge ratios on complex size, surface charge, and affinity for factors that modify cellular-uptake, intracellular-activity, and cytokine-production efficiency highlight the importance of a rational complex design for delivering and controlling G4-CpG ODN activity.


Assuntos
Lipossomos , Propano , Humanos , Lipossomos/química , Propano/farmacologia , Leucócitos Mononucleares , Citocinas , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/química , Interleucina-6/farmacologia , Interferon-alfa/farmacologia
6.
Langmuir ; 39(22): 7557-7565, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37225422

RESUMO

Semiconductor nanocrystals or quantum dots (QDs) have gained significant attention in biomedical research as versatile probes for imaging, sensing, and therapies. However, the interactions between proteins and QDs, which are crucial for their use in biological applications, are not yet fully understood. Asymmetric flow field-flow fractionation (AF4) is a promising method for analyzing the interactions of proteins with QDs. This technique uses a combination of hydrodynamic and centrifugal forces to separate and fractionate particles based on their size and shape. By coupling AF4 with other techniques, such as fluorescence spectroscopy and multi-angle light scattering, it is possible to determine the binding affinity and stoichiometry of protein-QD interactions. Herein, this approach has been utilized to determine the interaction between fetal bovine serum (FBS) and silicon quantum dots (SiQDs). Unlike metal-containing conventional QDs, SiQDs are highly biocompatible and photostable in nature, making them attractive for a wide range of biomedical applications. In this study, AF4 has provided crucial information on the size and shape of the FBS/SiQD complexes, their elution profile, and their interaction with serum components in real time. The differential scanning microcalorimetric technique has also been employed to monitor the thermodynamic behavior of proteins in the presence of SiQDs. We have investigated their binding mechanisms by incubating them at temperatures below and above the protein denaturation. This study yields various significant characteristics such as their hydrodynamic radius, size distribution, and conformational behavior. The compositions of SiQD and FBS influence the size distribution of their bioconjugates; the size increases by intensifying the concentration of FBS, with their hydrodynamic radii ranging between 150 and 300 nm. The results signify that in the alliance of SiQDs to the system, there is an augmentation of the denaturation point of the proteins and hence their thermal stability, providing a more comprehensive understanding of the interactions between FBS and QDs.


Assuntos
Fracionamento por Campo e Fluxo , Pontos Quânticos , Pontos Quânticos/química , Silício , Soroalbumina Bovina/química , Fracionamento por Campo e Fluxo/métodos , Temperatura
7.
Rep Biochem Mol Biol ; 11(4): 599-613, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37131904

RESUMO

Background: This study aims to prepare high stability chitosan nanoparticles (CNP) and examine the ability of CNP in CpG-ODN delivery when treating allergic mice model. Methods: Preparation and characterization of CNP were performed by ionic gelation, dynamic light scattering, and zeta sizer. The CNP cytotoxicity and activation ability of CpG ODN delivered with CNP were tested using a cell counting kit-8 and Quanti blue method. Allergic mice were injected intraperitoneal with 10 ug ovalbumin on day 0 and 7, and then treated with intranasal CpG ODN/CpG ODN, delivered with CNP/CNP, on the third week three times per week for three weeks. The ELISA method measured cytokine and IgE profiles in the allergic mice's plasma and spleen. Results: CNP results have sizes 27.73 nm±3.67 dan 188.23 nm±53.47, spherical in shape and non-toxic, and did not alter the NF-κB activation of CpG ODN in RAW-blue cells. The application of CpG ODN delivered by chitosan nanoparticles shows no statistical difference between groups of IFN-γ, IL-10, and IL-13 in Balb/c mice's plasma and spleen, in contrast with IgE level. Conclusions: The results showed that using chitosan nanoparticles as a delivery system for CpG ODN has the potency to safely CpG ODN efficacy.

8.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551070

RESUMO

The detection of trace amounts of water in organic solvents is of great importance in the field of chemistry and in the industry. Karl Fischer titration is known as a classic method and is widely used for detecting trace amounts of water; however, it has some limitations in terms of rapid and direct detection because of its time-consuming sample preparation and specific equipment requirements. Here, we found that a DNA-based nanomechanical sensor exhibits high sensitivity and selectivity to water vapor, leading to the detection and quantification of trace amounts of water in organic solvents as low as 12 ppm in THF, with a ppb level of LoD through their vapors. Since the present method is simple and rapid, it can be an alternative technique to the conventional Karl Fischer titration.


Assuntos
Solventes
9.
Biomolecules ; 12(12)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551297

RESUMO

Unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) induce inflammatory cytokines and type I interferons (IFNs) to activate the immune system. To apply CpG ODNs as vaccine adjuvants, the cellular uptake and stability of phosphodiester-based, non-modified ODNs require further improvement. Previously developed new CpG ODNs forming guanine-quadruplex (G4) structures showed higher nuclease resistance and cellular uptake than linear CpG ODNs; however, the complex formation of G4-CpG ODNs with antigen proteins is necessary for their application as vaccine adjuvants. In this study, we utilized a cationic polymer, ε-poly-L-lysine (ε-PLL), as a carrier for G4-CpG ODNs and antigen. The ε-PLL/G4-CpG ODN complex exhibited enhanced stability against nucleases. Cellular uptake of the ε-PLL/G4-CpG ODN complex positively correlated with the N/P ratio. In comparison to naked G4-CpG ODNs, the ε-PLL/G4-CpG ODN complex induced extremely high levels of interleukin (IL)-6, IL-12, and IFN-ß. Relative immune cytokine production was successfully tuned by N/P ratio modification. Mice with the ε-PLL/G4-CpG ODN/ovalbumin (OVA) complex showed increased OVA-specific immunoglobulin (Ig)G, IgG1, and IgG2c levels, whereas total IgE levels did not increase and weight gain rates were not affected. Therefore, ε-PLL can serve as a safe and effective phosphodiester-based, non-modified CpG ODN delivery system, and the ε-PLL/G4-CpG ODN/antigen complex is a highly promising candidate for vaccine adjuvants and can be further used in clinical research.


Assuntos
Adjuvantes Imunológicos , Adjuvantes de Vacinas , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Lisina , Formação de Anticorpos , Guanina , Antígenos , Imunoglobulina G , Fosfatos , Oligodesoxirribonucleotídeos/química
10.
J Mater Chem B ; 10(43): 8960-8969, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36285587

RESUMO

DNAzyme-based (catalytic nucleic acid) biosensing technology is recognised as a valuable biosensing tool in diagnostic medicine and seen as a cheaper, more stable alternative to antibodies or enzymes. However, like enzyme discovery, no method exists to predict DNAzyme sequences that result in high catalytic activity using computer software (in silico). In this work, iterative in silico maturation and in vitro evaluation were applied to a DNAzyme oligodeoxynucleotide (ODN) sequence to elucidate novel synthetic sequences with enhanced DNAzyme activity. An already well-known model DNAzyme, the G-quadruplex/hemin complex, was iterated over eight generations to elucidate synthetic sequences that were up to five times faster than the original parent sequence. By combining molecular dynamics simulations, we found that the POD-mimicking activities were largely affected by docking modes and the tightness of locking between complexes. Ultimately, the theoretical models showed significant sequence-dependencies.


Assuntos
DNA Catalítico , Quadruplex G , Hemina , Catálise , Oligodesoxirribonucleotídeos
11.
ACS Chem Biol ; 17(7): 1703-1713, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35765965

RESUMO

We previously reported that the formation of guanine-quadruplex (G4) structures provides phosphodiester oligodeoxynucleotides containing unmethylated cytosine-phosphate-guanine (CpG ODNs) with higher nuclease resistance and cellular uptake, thereby increasing their immunostimulation efficiency through TLR9 activation. CpG ODNs forming G4 structures (G4 CpG ODNs) are thus potential vaccine adjuvants against infectious diseases. However, the G4 structure changes topology depending on the surrounding environment. Recently, G4 ligands, which are small molecules that bind to G4 ODNs with high affinity, were reported to improve the stability of G4. In this study, we propose to increase the stability and function of G4 CpG ODNs using G4 ligands. We show the effects of two G4 ligands, named L2H2-6OTD (L2H2) and L2G2-2M2EG-6OTD (L2G2), on the topology, stability, and immunostimulatory properties of a monomeric hybrid-type G4 CpG ODN containing CpG motifs in the central loop, named GD3. We found that L2H2 helps maintain the hybrid G4 topology of GD3, whereas L2G2 induces parallel G4 formation. Both G4 ligands increase the thermodynamic and nuclease stability of GD3. However, only GD3 associated with L2H2 binds efficiently to TLR9 and evokes a higher immune response from mouse macrophage-like RAW264 cells. GD3 associated with L2G2 does not bind efficiently to TLR9 and elicits lower cytokine production. Our results demonstrate that the potential to enhance immunostimulatory properties depends on the ability of G4 ligands to maintain and stabilize the hybrid G4 of GD3. We anticipate that our findings will facilitate the development of more effective G4 CpG ODN-based vaccine adjuvants against infectious diseases.


Assuntos
Doenças Transmissíveis , Receptor Toll-Like 9 , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Guanina , Imunização , Camundongos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Receptor Toll-Like 9/metabolismo
12.
J Am Chem Soc ; 144(24): 10830-10843, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35587544

RESUMO

Chromophores that generate singlet oxygen (1O2) in water are essential to developing noninvasive disease treatments using photodynamic therapy (PDT). A facile approach for formation of stable colloidal nanoparticles of 1O2 photosensitizers, which exhibit aggregation enhanced 1O2 generation in water toward applications as PDT agents, is reported. Chromophore encryption within a fuchsonarene macrocyclic scaffold insulates the photosensitizer from aggregation induced deactivation pathways, enabling a higher chromophore density than typical 1O2 generating nanoparticles. Aggregation enhanced 1O2 generation in water is observed, and variation in molecular structure allows for regulation of the physical properties of the nanoparticles which ultimately affects the 1O2 generation. In vitro activity and the ability of the particles to pass through the cell membrane into the cytoplasm is demonstrated using confocal fluorescence microscopy with HeLa cells. Photosensitizer encryption in rigid macrocycles, such as fuchsonarenes, offers new prospects for the production of biocompatible nanoarchitectures for applications involving 1O2 generation.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Células HeLa , Humanos , Oxigênio , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/metabolismo , Água
13.
Biomacromolecules ; 23(3): 1101-1111, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35104113

RESUMO

In this study, concentrated polymer brush-modified cellulose nanofibers (CNFs) with different fiber lengths were used for the flocculation of cells for systematically studying the mechanism of this unique cellular flocculation based on colloidal flocculation theory. Concentrated poly(p-styrenesulfonic acid sodium salt) brush-grafted CNF (CNF-PSSNa) with different fiber lengths were cultured with three different cell types to examine their influence on floc (cell clusters formed by cellular flocculation) characteristics. The floc size and survival rate could be controlled by modifying the CNF-PSSNa fiber lengths. The three cell types showed the same flocculation tendency after culture, indicating the applicability of the method in different cell lines. After 2 weeks of culture, CNF-PSSNa increased the specific expression of hepatocytes compared to the two-dimensional cell culture. Thus, owing to its wide applicability, high cell viability, and ability to control cell size and improve cell function, this technology could be used as a new three-dimensional cell culture method.


Assuntos
Nanofibras , Celulose , Floculação , Polímeros
14.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162963

RESUMO

After dental implantation, osteopontin (OPN) is deposited on the hydroxyapatite (HA) blasted implant surface followed by direct osteogenesis, which is significantly disturbed in Opn-knockout (KO) mice. However, whether applying OPN on the implant surface promotes direct osteogenesis remains unclarified. This study analyzed the effects of various OPN modified protein/peptides coatings on the healing patterns of the bone-implant interface after immediately placed implantation in the maxilla of four-week-old Opn-KO and wild-type (WT) mice (n = 96). The decalcified samples were processed for immunohistochemistry for OPN and Ki67 and tartrate-resistant acid phosphatase histochemistry. In the WT mice, the proliferative activity in the HA binding peptide-OPN mimic peptide fusion coated group was significantly higher than that in the control group from day 3 to week 1, and the rates of OPN deposition and direct osteogenesis around the implant surface significantly increased in the recombinant-mouse-OPN (rOPN) group compared to the Gly-Arg-Gly-Asp-Ser peptide group in week 2. The rOPN group achieved the same rates of direct osteogenesis and osseointegration as those in the control group in a half period (week 2). None of the implant surfaces could rescue the direct osteogenesis in the healing process in the Opn-KO mice. These results suggest that the rOPN coated implant enhances direct osteogenesis during osseointegration following implantation.


Assuntos
Durapatita/química , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteopontina/administração & dosagem , Fosfatase Ácida/metabolismo , Animais , Implantação Dentária , Implantes Dentários , Técnicas de Inativação de Genes , Camundongos , Modelos Animais , Osteopontina/química , Osteopontina/genética , Osteopontina/farmacologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
15.
Biotechnol Bioeng ; 119(4): 1157-1163, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35067921

RESUMO

Cobalt-chromium-molybdenum (CCM) alloys possess high corrosion-resistant properties as well as good mechanical properties. Hence, the alloys are employed in medical implants such as artificial knee and hip joints, coronary stents, and removable partial dentures. To improve the biocompatibility of CCM alloys, we reported that CCM-binding peptide (CBP) linked to cell-adhesive motif Arg-Gly-Asp (RGD) improved the attachment of endothelial cells on CCM alloys. However, the stability of CBP adsorption on the alloy and its effect on osteoblast compatibility are still unclear. In this study, we evaluated the stabilization of the adsorption layer of CBP-RGD on CCM alloy surface and investigated the effect of CBP-RGD peptide on the proliferation and differentiation of the osteoblasts. CBP-RGD layer exhibited higher stabilization than the RGD adsorption layer for 7 days. In addition, the proliferation of osteoblast on CBP-RGD adsorbed alloy higher than that on RGD adsorbed alloy. Moreover, the calcification of cells cultured on the CBP-RGD adsorbed alloy was significantly higher than that of the cells on RGD adsorbed alloy. These findings indicate that the CBP binding was stable during the culture of osteoblasts on the CCM alloy.


Assuntos
Ligas , Células Endoteliais , Ligas/química , Proliferação de Células , Teste de Materiais , Osteoblastos , Peptídeos , Propriedades de Superfície , Vitálio/química
16.
Langmuir ; 38(17): 5188-5196, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35083914

RESUMO

We report carboxy-terminated silicon quantum dots (SiQDs) that exhibit high solubility in water due to the high molecular coverage of surface monolayers, bright light emission with high photoluminescence quantum yields (PLQYs), long-term stability in the PL property for monitoring cells, less toxicity to the cells, and a high photothermal response. We prepared water-soluble SiQDs by the thermal hydrosilylation of 10-undecenoic acid on their hydrogen-terminated surfaces, provided by the thermal disproportionation of triethoxysilane hydrolyzed at pH 3 and subsequent hydrofluoric etching. The 10-undecanoic acid-functionalized SiQDs (UA:SiQDs) showed long-term stability in hydrophilic solvents including ethanol and water (pH 7). We assess their interaction with live cells by means of cellular uptake, short-term toxicity, and, for the first time, long-term cytotoxicity. Results show that UA:SiQDs are potential candidates for theranostics, with their good optical properties enabling imaging for more than 18 days and a photothermal response having a 25.1% photothermal conversion efficiency together with the direct evidence of cell death by laser irradiation. UA:SiQDs have low cytotoxicity with full viability of up to 400 µg/mL for the short term and a 50% cell viability value after 14 days of incubation at a 50 µg/mL concentration.


Assuntos
Pontos Quânticos , Silício , Fluorescência , Hidrogênio , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Silício/química , Água
17.
Nanomedicine ; 40: 102508, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906721

RESUMO

Guanine-quadruplex (G4) oligodeoxynucleotides (ODNs) that contain unmethylated cytosine-phosphate-guanine motifs (G4 CpG ODN) with phosphodiester backbones are safer than the phosphorothioate (PT)-modified CpG ODNs recently used as vaccine adjuvants. However, cellular uptake and the nuclease stability of G4 CpG ODNs are still insufficient, resulting in lower immunostimulatory activity than PT-modified CpG ODNs. We aimed to enhance the immunostimulatory properties of G4 CpG ODNs by complexing with the cationic liposome 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The complex acquired nuclease resistance and improved cellular uptake. The immunostimulatory activity of the G4 CpG ODN-DOTAP lipoplexes was enhanced to a level comparable to that of PT-modified ODNs. In addition, the lipoplexes based on unmodified G4 CpG ODNs demonstrated CpG motif-specific immunostimulant activity, although PT-modified ODNs lacking the CpG motif could activate human immune cells. Interestingly, G4 CpG ODN-DOTAP lipoplexes induced interferon-α production in a loop-length dependent manner.


Assuntos
Oligodesoxirribonucleotídeos , Propano , Adjuvantes Imunológicos/farmacologia , Ilhas de CpG , Ácidos Graxos Monoinsaturados , Humanos , Oligodesoxirribonucleotídeos/farmacologia , Compostos de Amônio Quaternário/farmacologia
18.
Biomolecules ; 11(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34827615

RESUMO

Guanine-quadruplex-based CpG oligodeoxynucleotides (G4 CpG ODNs) have been developed as potent immunostimulatory agents with reduced sensitivity to nucleases. We designed new monomeric G4 ODNs with an antiparallel topology using antiparallel type duplex/G4 ODNs as robust scaffolds, and we characterized their topology and effects on cytokine secretion. Based on circular dichroism analysis and quantification of mRNA levels of immunostimulatory cytokines, it was found that monomeric antiparallel G4 CpG ODNs containing two CpG motifs in the first functional loop, named G2.0.0, could maintain antiparallel topology and generate a high level of immunostimulatory cytokines in RAW264 mouse macrophage-like cell lines. We also found that the flanking sequence in the CpG motif altered the immunostimulatory effects. Gc2c.0.0 and Ga2c.0.0 are monomeric antiparallel G4 CpG ODNs with one cytosine in the 3' terminal and one cytosine/adenine in the 5' terminal of CpG motifs that maintained the same resistance to degradation in serum as G2.0.0 and improved interleukin-6 production in RAW264 and bone marrow-derived macrophages. The immunostimulatory activity of antiparallel G4 CpG ODNs is superior to that of linear natural CpG ODNs. These results provide insights for the rational design of highly potent CpG ODNs using antiparallel G4 as a robust scaffold.


Assuntos
Guanina , Oligodesoxirribonucleotídeos , Adjuvantes Imunológicos , Animais , Camundongos
19.
Biomacromolecules ; 22(6): 2505-2514, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33938735

RESUMO

Concentrated polymer brushes (CPBs) are known to suppress biofouling phenomena, such as protein adsorption and cell adhesion. However, a cumbersome process is needed for their synthesis. Here, we report a simple and versatile method for fabricating nonbiofouling coatings that uses well-defined bottlebrushes instead of CPBs. First, a macroinitiator, poly[2-(2-bromoisobutyryloxy)ethyl methacrylate] (PBIEM), was synthesized by reversible addition-fragmentation chain transfer polymerization. Then, poly[poly(ethylene glycol) methyl ether methacrylate] was grafted from PBIEM through atom transfer radical polymerization to form well-defined bottlebrushes. By controlling the graft chain length, two types of bottlebrushes could be prepared, namely those with a semi-dilute polymer brush (SDPB) structure or a CPB structure on the surface of the outermost layer. Crosslinked films of the bottlebrushes were prepared on silicon wafers by spin-coating and subsequent radical coupling. Importantly, the CPB-type bottlebrush films showed significantly better nonbiofouling characteristics than those of the SDPB-type bottlebrush films.


Assuntos
Incrustação Biológica , Polímeros , Adsorção , Incrustação Biológica/prevenção & controle , Adesão Celular , Metacrilatos , Polimerização , Propriedades de Superfície
20.
ACS Appl Bio Mater ; 4(9): 6881-6892, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006988

RESUMO

B-type carbonate apatite (CAp) coatings were formed on as-cast and T4-treated Mg-xZn (x = 1, 5, and 7 wt %) alloys containing various sized Zn-rich second phase to improve the corrosion resistance and biocompatibility. The CAp coating grew uniformly on the alloys with a thickness of 1.1-1.3 µm and did not show cracks or pores on 30 µm-sized second-phase particles. The CAp coating retarded corrosion of Mg-Zn substrates for the first 3-5 days in Hanks' solution. Polarization resistance of the CAp-coated alloys was 10-90 and 1-70 times higher than the uncoated and hydroxyapatite (HAp)-coated alloys, respectively. The corrosion rate of CAp-coated alloys was greatly affected by the substrate alloys once the coatings were partly broken. The CAp-coated alloys showed 40-60 and 25-45% lower 14-day average corrosion rates than the uncoated and HAp-coated alloys, respectively, in the immersion test. The CAp coating significantly enhanced the viability of osteoblastic MC3T3-E1 cells on the Mg-Zn alloys for 72 h compared to the uncoated and HAp-coated alloys. The cell densities on CAp-coated alloys were similar for 72 h regardless of substrate alloys. Therefore, the CAp coating can be a superior coating candidate for corrosion-control and biocompatibility improvement for biodegradable Mg alloys.


Assuntos
Ligas , Materiais Revestidos Biocompatíveis , Ligas/farmacologia , Apatitas , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Durapatita/farmacologia , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...