Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 101013, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38961625

RESUMO

The two principal growth regulators cytokinins and ethylene are known to interact in the regulation of plant growth. However, information about underlying molecular mechanism and positional specificity of the cytokinin/ethylene crosstalk in root growth control is scarce. We have identified spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. In contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis, the production of ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs), and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3 and ACO4 as being responsible for ethylene biosynthesis and the ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatial-specific regulation of ethylene biosynthesis as a key aspect of hormonal control over root growth.

2.
J Exp Bot ; 72(19): 6768-6788, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34343283

RESUMO

Plant hormones are key regulators of a number of developmental and adaptive responses in plants, integrating the control of intrinsic developmental regulatory circuits with environmental inputs. Here we provide an overview of the molecular mechanisms underlying hormonal regulation of root development. We focus on key events during both embryonic and post-embryonic development, including specification of the hypophysis as a future organizer of the root apical meristem (RAM), hypophysis asymmetric division, specification of the quiescent centre (QC) and the stem cell niche (SCN), RAM maturation and maintenance of QC/SCN activity, and RAM size. We address both well-established and newly proposed concepts, highlight potential ambiguities in recent terminology and classification criteria of longitudinal root zonation, and point to contrasting results and alternative scenarios for recent models. In the concluding remarks, we summarize the common principles of hormonal control during root development and the mechanisms potentially explaining often antagonistic outputs of hormone action, and propose possible future research directions on hormones in the root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Raízes de Plantas/metabolismo , Nicho de Células-Tronco
3.
Mol Plant ; 12(10): 1338-1352, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31176773

RESUMO

Cytokinins and ethylene control plant development via sensors from the histidine kinase (HK) family. However, downstream signaling pathways for the key phytohormones are distinct. Here we report that not only cytokinin but also ethylene is able to control root apical meristem (RAM) size through activation of the multistep phosphorelay (MSP) pathway. We found that both cytokinin and ethylene-dependent RAM shortening requires ethylene binding to ETR1 and the HK activity of ETR1. The receiver domain of ETR1 interacts with MSP signaling intermediates acting downstream of cytokinin receptors, further substantiating the role of ETR1 in MSP signaling. We revealed that both cytokinin and ethylene induce the MSP in similar and distinct cell types with ETR1-mediated ethylene signaling controlling MSP output specifically in the root transition zone. We identified members of the MSP pathway specific and common to both hormones and showed that ETR1-regulated ARR3 controls RAM size. ETR1-mediated MSP spatially differs from canonical CTR1/EIN2/EIN3 ethylene signaling and is independent of EIN2, indicating that both pathways can be spatially and functionally separated. Furthermore, we demonstrated that canonical ethylene signaling controls MSP responsiveness to cytokinin specifically in the root transition zone, presumably via regulation of ARR10, one of the positive regulators of MSP signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Citocininas/farmacologia , Etilenos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Receptores de Superfície Celular/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Citocininas/metabolismo , Relação Dose-Resposta a Droga , Etilenos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Development ; 145(19)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190280

RESUMO

During plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how this coordination is achieved. Here, we investigated coordination in Arabidopsis thaliana seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and cell shape in root tips. CWD inhibited cell cycle gene expression and increased transition zone cell width in an osmosensitive manner. These results were correlated with CWD-induced, osmosensitive changes in cytokinin homeostasis. Expression of CYTOKININ OXIDASE/DEHYDROGENASE 2 and 3 (CKX2, CKX3), which encode cytokinin-degrading enzymes, was induced by CWD and reduced by osmoticum treatment. In nitrate reductase1 nitrate reductase2 (nia1 nia2) seedlings, CKX2 and CKX3 transcript levels were not increased and cell cycle gene expression was not repressed by CWD. Moreover, established CWD-induced responses, such as jasmonic acid, salicylic acid and lignin production, were also absent, implying a central role of NIA1/2-mediated processes in regulation of CWD responses. These results suggest that CWD enhances cytokinin degradation rates through a NIA1/2-mediated process, leading to attenuation of cell cycle gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Ciclo Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrato Redutase/metabolismo , Arabidopsis/efeitos dos fármacos , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Modelos Biológicos , Osmose , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Sorbitol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...