Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 158: 112-120, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31378345

RESUMO

Cytochrome P450s (P450s) confer resistance against herbicides, and this is increasingly becoming a concern for weed control. As a widespread Gramineae weed in paddy fields, Echinocloa glabrescens has become resistant to the acetolactate synthase (ALS)-inhibiting triazolopyrimidine herbicide penoxsulam. In this study, we found that the GR50 of the resistant population (SHQP-R) decreased substantially from 25.6 to 5.0 and 6.2 g a.i. ha-1 after treatment with the P450 inhibitors piperonyl butoxide (PBO) and malathion, respectively. However, P450 inhibitors almost had no effects on the susceptibility of the sensitive population (JYJD-S) to penoxsulam. To investigate the mechanisms of metabolic resistance, transcriptome sequencing analysis was performed to find candidate genes that may confer resistance to penoxsulam in E. glabrescens. A total of 233 P450 differentially expressed genes (DEGs) were identified by transcriptome sequencing. We found that the metabolic process and metabolic pathways were the most highly enriched in DEGs. Further, twenty-seven candidate P450 DEGs were selected for qPCR validation analyses. After penoxsulam treatment, the relative expression levels were significantly higher in SHQP-R than in JYJD-S. Among these, the relative expression of twenty-three P450 DEGs (eighteen from the CYP72A-71C-74A-96A-734A subfamily; five from CYP81E1-94C1-94B3-714C1-714C2) were upregulated and four P450 DEGs (from CYP724B1-711A1-707A7-97B2) were downregulated. Changes in the expression of these candidate P450 genes in E. glabrescens were in response to penoxsulam, which provides preliminary evidence for the role of P450s in herbicide metabolism in E. glabrescens. However, further functional studies on metabolic resistance to penoxsulam in a resistant E. glabrescens population are required.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Echinochloa/efeitos dos fármacos , Echinochloa/metabolismo , Perfilação da Expressão Gênica/métodos , Sulfonamidas/farmacologia , Uridina/análogos & derivados , Sistema Enzimático do Citocromo P-450/genética , Echinochloa/genética , Resistência a Herbicidas/genética , Malation/farmacologia , Butóxido de Piperonila/farmacologia , Uridina/farmacologia
2.
J Agric Food Chem ; 67(29): 8085-8095, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31265279

RESUMO

Herbicide resistance identification is essential for effective chemical weed control. In this study, we quantified the differences in growth response between penoxsulam resistant (R) and sensitive (S) Echinochloa crus-galli populations, explored the changes in ALS, and performed genetic analyses to identify metabolic genes that are up-regulated by the application of penoxsulam and other common herbicides. The R population showed a 26.0-fold higher resistance to penoxsulam and varied resistance to most tested herbicides with indices ranging from 4.9 to 145.9. A Trp-574-Arg amino acid mutation in ALS and low penoxsulam ALS sensitivity were the main mechanisms underlying herbicide resistance. The penoxsulam resistance can be significantly reversed by two P450s inhibitors and one GST inhibitor. By RNA-Seq, thirty-six highly expressed contigs were selected, and 30 of them were up-regulated in the R population treated by penoxsulam. Many of these genes were significantly expressed when treated with pyroxsulam, metamifop, and quinclorac. These upregulated genes appear to be complementary for plant resistance to penoxsulam and other common herbicides.


Assuntos
Echinochloa/efeitos dos fármacos , Resistência a Herbicidas , Herbicidas/farmacologia , Sulfonamidas/farmacologia , Uridina/análogos & derivados , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Echinochloa/genética , Echinochloa/crescimento & desenvolvimento , Echinochloa/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Uridina/farmacologia
3.
Environ Sci Pollut Res Int ; 25(7): 6456-6465, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29249033

RESUMO

Hg0, SO2, and NOx result in heavily global environmental pollution and serious health hazards. Up to now, how to efficiently remove mercury with SO2 and NOx from flue gas is still a tough task. In this study, series of high oxidizing Fenton systems were employed to purify the pollutants. The experimental results showed that Fe3+/H2O2 was more suitable to purify Hg0 than Fe2+/H2O2 and Cu2+/H2O2. The optimal condition includes Fe3+ concentration of 0.008 mol/L, Hg0 inlet concentration of 40 µg/m3, solution temperature of 50 °C, pH of 3, H2O2 concentration of 0.7 mol/L, and O2 percentage of 6%. When SO2 and NOx were taken into account under the optimal condition, Hg0 removal efficiency could be enhanced to 91.11% while the removal efficiency of both NOx and SO2 was slightly declined, which was consistent to the analysis of purifying mechanism. The removal efficiency of Hg0 was stimulated by accelerating the conversion of Fe2+ to Fe3+, which resulted from the existence of SO2 and NOx. The results of this study suggested that simultaneously purifying Hg0, SO2, and NOx from flue gas is feasible.


Assuntos
Poluentes Atmosféricos/análise , Compostos Férricos/química , Peróxido de Hidrogênio/química , Mercúrio/análise , Óxidos de Nitrogênio/análise , Dióxido de Enxofre/análise , Gerenciamento de Resíduos/métodos , Gases/química , Oxirredução , Temperatura
4.
Environ Sci Pollut Res Int ; 24(34): 26310-26323, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29063396

RESUMO

The vast majority of Hg2+ can be removed while elemental mercury (Hg0) can hardly be removed due to its characteristic of high volatility and insolubility in water. Till now, how to oxidize Hg0 to Hg2+ is the key for the purification of Hg0, especially when there are others pollutants, such as HCl, SO2, and NOx. In this review, the method and mechanism of Hg0 purification from flue gas by H2O2, KMnO4, NaClO2, and O3 are reviewed comprehensively. It is concluded that the oxidation of Hg0 mainly depends on the electronic supply efficiency from the solution. The Fenton reagent, composed of H2O2 and metal cations, is superior to O3 and the solution of KMnO4 and NaClO2. Moreover, HCl, SO2, and NOx in the flue gas can influence the oxidation and purification mechanism of Hg0. It is found that HCl in flue gas had obvious auxo-action on the oxidation of mercury, and SO2 and NOx have different effects on the oxidation of Hg0 with the change of compositions and concentration of pollutants in the flue gas. In general, SO2 and NOx can slightly promote the oxidation of Hg0 due to the synergistic effect.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Mercúrio/isolamento & purificação , Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Cloretos/química , Gases/química , Peróxido de Hidrogênio/química , Ferro/química , Mercúrio/química , Oxirredução , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...