Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 10(1): 128, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39261463

RESUMO

Wearable ultrasound imaging technology has become an emerging modality for the continuous monitoring of deep-tissue physiology, providing crucial health and disease information. Fast volumetric imaging that can provide a full spatiotemporal view of intrinsic 3D targets is desirable for interpreting internal organ dynamics. However, existing 1D ultrasound transducer arrays provide 2D images, making it challenging to overcome the trade-off between the temporal resolution and volumetric coverage. In addition, the high driving voltage limits their implementation in wearable settings. With the use of microelectromechanical system (MEMS) technology, we report an ultrasonic phased-array transducer, i.e., a 2D piezoelectric micromachined ultrasound transducer (pMUT) array, which is driven by a low voltage and is chip-compatible for fast 3D volumetric imaging. By grouping multiple pMUT cells into one single drive channel/element, we propose an innovative cell-element-array design and operation of a pMUT array that can be used to quantitatively characterize the key coupling effects between each pMUT cell, allowing 3D imaging with 5-V actuation. The pMUT array demonstrates fast volumetric imaging covering a range of 40 mm × 40 mm × 70 mm in wire phantom and vascular phantom experiments, achieving a high temporal frame rate of 11 kHz. The proposed solution offers a full volumetric view of deep-tissue disorders in a fast manner, paving the way for long-term wearable imaging technology for various organs in deep tissues.

2.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732819

RESUMO

In this paper, we present a novel three-dimensional (3D) coupled configuration of piezoelectric micromachined ultrasound transducers (pMUTs) by combing a curved and an annular diaphragm for transmit performance optimization in biomedical applications. An analytical equivalent circuit model (EQC) is developed with varied excitation methods to incorporate the acoustic-structure coupling of the curved and annular diaphragm-coupled pMUTs (CAC-pMUTs). The model-derived results align well with the reference simulated by the finite element method (FEM). Using this EQC model, we optimize the key design parameters of the CAC-pMUTs in order to improve the output sound pressure, including the width of the annular membrane, the thickness of the passive layer, and the phase difference of the driving voltage. In the anti-phase mode, the designed CAC-pMUTs demonstrate a transmit efficiency 285 times higher than that of single annular pMUTs. This substantial improvement underscores the potential of CAC-pMUTs for large array applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA