Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-13, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37183650

RESUMO

Erythromycin (ERY), as a common macrolides antibiotic, is widely used for sterilisation and disinfection of humans or livestock whose migration and transformation in the surface water environment are significantly related to dissolved organic matter (DOM). The characteristics of DOM can be greatly influenced by the complexation between ERY with itself in soil infiltration system. Using spectroscopic techniques (excitation-emission matrices, parallel factor analysis, Fourier infrared spectroscopy, and synchronous fluorescence spectroscopies) to explore the complexation properties of each DOM component with ERY in the system. The binding order of ERY with DOM functional groups was determined by two-dimensional correlation spectroscopy combined with FTIR. The amide I band v(C = O) exhibited stronger binding affinity. After the treatment, the DOM fluorescence intensity sharply decreased and the ERY concentration declined by 88.36%. Thus, synchronous degradation may occur between them. The result of synchronous fluorescence spectroscopy integrated with two-dimensional correlation spectroscopy indicated that the complexation sequencing and ability of DOM with ERY can be changed by a soil infiltration system. There are more binding sites exhibited in DOM with ERY in effluent than influent. A protein-like component of DOM showed priority binding order and more stable binding with ERY and had the highest Log KM value of 3.61. These results demonstrated that the binding of DOM with ERY in a soil infiltration system could take out most fluorescent DOM, and reduce the concentration and risk of ERY in the surface water body.

2.
J Environ Sci (China) ; 130: 223-233, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37032038

RESUMO

Sulfadiazine (SD) is a common antibiotic administered to treat bacterial infections in livestock, and its fate and migration are greatly affected by dissolved organic matter (DOM). The soil infiltration system [a typical low-impact development (LID) facility] can significantly alter DOM properties during runoff pollution, thus affecting the complexation of SD with DOM. Here, the binding characteristics of different DOM components and SD in the soil infiltration system were explored using spectroscopic techniques (excitation-emission matrices, parallel factor analysis, and synchronous fluorescence spectroscopy). Combined with the weakening of DOM fluorescence intensity and 78.63% reduction in mean SD concentration following treatment, synchronous degradation may have occurred. The binding sequence of SD and DOM fluorophores was further explored using two-dimensional correlation spectroscopy. Effluent DOM showed greater sensitivity to SD and more binding sites than influent DOM. Moreover, hydrophobic protein-like substances exhibited higher log KM values than other fluorescent components, indicating that protein-like components play significant roles in SD complexation. The soil percolation system improved the complexation stability and binding sequence of fulvic-like substances. Thus, SD-DOM can be intercepted and degraded using LID facilities to reduce the risk of SD in aquatic environments.


Assuntos
Matéria Orgânica Dissolvida , Substâncias Húmicas , Substâncias Húmicas/análise , Sulfadiazina , Solo/química , Espectrometria de Fluorescência/métodos , Análise Fatorial
3.
Environ Res ; 220: 115224, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626948

RESUMO

A storm-drain inlet is an important link in the transport of microplastic pollutants in urban rainwater runoff. In three functional districts (agricultural, commercial, and residential) from Beijing South 2nd Ring Road to South 6th Ring Road, microplastics in storm-drain inlet sediments were analyzed for abundance and characteristics. The abundance of microplastics in the collected samples ranged from 1121 ± 247 items kg-1 to 7393 ± 491 items kg-1. Among the sample areas, the commercial area had the greatest abundance (11094 items kg-1), while the agricultural area had the lowest (833 items kg-1). The microplastics in the samples were mainly fragments, accounting for 50.4%. Microplastics of less than 1 mm accounted for 74.8%. The color of microplastics was diverse, with colored MPs accounting for 26% and transparent ones for 47.8%. Most of the polymers detected were PET, PS, and PP, which are the most commonly used polymers. Overall, the results provide baseline data on microplastic pollution and its associated risks, in addition to guidelines for controlling runoff pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Pequim , Baías , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Demografia
4.
Environ Technol ; 42(9): 1313-1325, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31543028

RESUMO

In this study, an efficient adsorption and reusable magnetic ligand material (Fe3O4@Chitosan-EDTA) was synthesized by binding EDTA dianhydride onto magnetic chitosan, and it was employed in removal of Co(II) from aqueous solution. The maximum adsorption capacity of Co(II) onto Fe3O4@CS-EDTA was 48.78 mg/g at pH = 5 (303 K), which is much higher than that of Fe3O4@Chitosan as well as chitosan. The kinetics of Co(II) on the Fe3O4@CS-EDTA was consistent with the pseudo-second-order model. The equilibrium data were better fit with the Langmuir isothermal model than with the Freundlich isothermal model, suggesting that the adsorption mechanism was chemical monolayer homogeneous adsorption. The thermodynamic data showed that the sorption of Co(II) was spontaneous. Furthermore, after four cycles, the adsorption capacity of Co(II) onto the Fe3O4@CS-EDTA still retained 84.5% of the capacity of the fresh adsorbent, indicating that Fe3O4@CS-EDTA can be considered a promising recyclable adsorbent to remove heavy-metal ions from wastewater.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Adsorção , Ácido Edético , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos
5.
Environ Sci Pollut Res Int ; 27(3): 2588-2598, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832938

RESUMO

Magnetic phosphorylated chitosan composite (P-MCS), an excellent adsorbent for Co(II), was synthesized in this experiment via a facile fabrication. Its removal efficiency was improved by optimizing pH, contact time, and initial concentration. The adsorption isotherms and kinetic models of Co(II) by P-MCS followed the Langmuir model and the pseudo-second-order model, respectively. However, the rate of adsorption was also affected by intragranular diffusion. The maximum adsorption capacity was 46.1 mg g-1 for Co(II). The results of spectroscopic analysis also indicated that good adsorption performance of Co(II) mainly depends on surface chelation between functional groups and metal ions. The saturation magnetic susceptibilities of P-MCS and P-MCS-Co were 22.29 emu g-1 and 18.18 emu g-1, respectively. The excellent magnetic properties of P-MCS enabled the easy achievement of solid-liquid separation via the use of an external magnetic field. In complex aqueous solutions, K+, Na+, Ca2+, and Mg2+ have less influence on P-MCS adsorption Co(II), but the adsorption capacity on Co(II) is still good. This study shows the feasibility of using P-MCS to treat wastewater containing Co(II).


Assuntos
Quitosana , Cobalto/química , Poluentes Químicos da Água , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Água
6.
Environ Technol ; 40(4): 441-450, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29050533

RESUMO

The water purification performance of grassy swales for treating stormwater road runoff was evaluated using a simulated experimental device in two different seasons. The results showed that the removal rates for total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) reached 89.90%, 56.71%, 32.37%, and 19.67%, respectively, in summer, and 34.09%, 7.75%, 56.71%, and 13.33%, respectively, in winter, suggesting that grassy swales showed higher water purification performance in summer than in winter. Soil filtration in grassy swales also showed high removal rates of TSS, COD, TN and TP in summer (98.13%, 59.10%, 33.82%, and 24.59% respectively). The structure, composition and source of dissolved organic matter (DOM) were investigated using ultraviolet visible (UV-Vis) spectra and fluorescence spectra. The spectral parameters indicated a relatively high humification and aromaticity of DOM, and a relatively higher contribution of organic matter derived from microbial substances in summer than in winter. In addition, grassy-swale treatment showed a slight decrease in metal-ion concentrations at the surface, while the removal rates in the bottom samples were 38.42%, 40.59%, 33.81%, and 40.06% for Cu2+, Cd2+, Pb2+, and Zn2+, respectively. The results of 2D-COS suggested that grass swales treatment can change the binding sites and binding sequencing of DOM with heavy metals and further influence the metal speciation, mobility and biotoxicity.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Monitoramento Ambiental , Poaceae , Movimentos da Água
7.
Environ Sci Pollut Res Int ; 25(19): 18866-18878, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29713983

RESUMO

Composting leachates were collected to investigate the fluorescent characteristic and compositional change of dissolved organic matter (DOM) and the effects of the DOM and nutrients on heavy metal distribution during a leachate combination treatment process. Excitation-emission matrix (EEM) fluorescence spectra showed that, with the progress of the treatment units, the content of fulvic-like, humic-like, and protein-like substances gradually decreased. One fulvic-like component (C1), three humic-like components (C2, C3, and C4), and three protein-like components (C5, C6, and C7) were identified in the leachate DOM by parallel factor analysis. Anaerobic-aerobic processes removed a large fraction of the tyrosine-like component (C7) and tryptophan-like component (C6) and a small amount of humic-like component (C2), while the membrane bioreactor showed a good removal effect on protein-like component. The ultra-filtration membrane treatment had a removal effect on fulvic-like and humic-like component and other recalcitrant compounds, while the reverse osmosis treatment had a good removal effect on both humic-like and protein-like components. Correlation analysis indicated that Mn and Cr were primarily associated with protein-like components and nutrients in the composting leachates. Ni and Pb were bound to fulvic-like, humic-like, and protein-like components, Co and Zn interacted with inorganic nitrogen and total phosphorus, and Cd only interacted with inorganic nitrogen.


Assuntos
Compostagem , Metais Pesados/química , Compostos Orgânicos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Análise Fatorial , Fluorescência , Substâncias Húmicas/análise , Nitrogênio/análise , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...