Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Drug Resist ; 26(8): 857-868, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32049589

RESUMO

Aspirin is one of the most commonly used nonsteroidal anti-inflammatory drugs. Various potential pharmacological effects of aspirin, such as anticancer, antibacterial activity, and prolonging life expectancy have been discovered. However, the mechanism of aspirin is not fully elucidated. Herein, the effects of aspirin on fatty acid metabolism in yeast cell model Saccharomyces cerevisiae were studied. The results showed that aspirin can induce lipid accumulation and reduce the unsaturated fat index in cells. The assessment of cell membrane integrity demonstrated that aspirin caused damage to the cell membrane. These effects of aspirin were attributed to the alterations of the expression of DCI1 and OLE1. Similarly, aspirin was able to cause lipid accumulation and damage to the cell membrane by interfering with the expression of OLE1 in Candida albicans. These findings are expected to improve current understanding of the mode of action of aspirin and provide a novel strategy for antifungal drug design. Graphical abstract [Figure: see text].


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Membrana Celular/efeitos dos fármacos , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Isomerases de Ligação Dupla Carbono-Carbono/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Estearoil-CoA Dessaturase/efeitos dos fármacos
2.
IUBMB Life ; 70(8): 753-762, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30092116

RESUMO

As a lipin family founding member, lipin1 exerts dual functions as a phosphatidate phosphatase enzyme and/or a co-transcriptional regulator in lipid metabolism. In fact, it is also involved in many other cell processes. In this study, we utilized pull down assay coupled with mass spectrometry (MS) to unravel protein-protein interaction networks of lipin1 in 293T human embryonic kidney cells. Pull-down assay on the Ni2+ -chelating column was used to isolate lipin1 complexes from 293T cells transfected with 6-His tagged lipin1. The lipin1 complexes were analyzed on Q Exactive mass spectrometer. A total of 30 proteins were identified from label free quantitation of the MS data by Proteome Discoverer platform. The physical interaction between lipin1 and eEF1A1 was further affirmed in 293T cells transfected with 6-His tagged lipin1 and hepatocyte SMMC7721 cells by protein immunoprecipitation and immunofluorescence microscopy. Lipin1 also interacted with HIST1H2BK, which was confirmed in SMMC7721 cells by protein immunoprecipitation. Our proteomic analysis implicated lipin1 in novel roles in various cellular processes. © 2018 IUBMB Life, 70(8):753-762, 2018.


Assuntos
Histonas/genética , Fator 1 de Elongação de Peptídeos/genética , Fosfatidato Fosfatase/genética , Proteômica/métodos , Células HEK293 , Hepatócitos/metabolismo , Humanos , Imunoprecipitação , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Espectrometria de Massas , Mapas de Interação de Proteínas/genética
3.
Microbiol Res ; 214: 1-7, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30031471

RESUMO

Clioquinol (CQ) has been used as a classical antimicrobial agent for many years. However, its mode of action is still unclear. In our study, the growth of Candida albicans and Saccharomyces cerevisiae was inhibited by CQ. It did not kill yeast cells, but shortened G1 phase and arrested cell cycle at G2/M phase. By using two-dimensional electrophoresis based proteomic approach, six proteins were found to be significantly affected by CQ. Among them, four (PDC1, ADH1, TDH3, IPP1) were up-regulated and the other two (TDH1 and PGK1) were down-regulated. According to the Saccharomyces Genome Database (SGD), these proteins were involved in various biological processes including glycolytic fermentation, gluconeogenesis, glycolytic process, amino acid catabolism, redox reaction and reactive oxygen species metabolic process. It was noted that there was a link between TDH3 and cell cycle. The overexpression of TDH3 phenocopied CQ treatment and arrested the cell cycle at G2/M phase. RT-PCR analysis showed that the mRNA levels of CLN3 and CDC28, critical genes for passage through G1 phase, were up-regulated after the treatment of CQ as well as the overexpression of TDH3. It demonstrates that CQ inhibits the growth of yeast by up-regulating the expression of TDH3 to influence the cell cycle. It is expected to provide new insights for the antimicrobial mechanism of CQ.


Assuntos
Antifúngicos/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Clioquinol/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Regulação para Cima , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional , Viabilidade Microbiana/efeitos dos fármacos , Proteoma/análise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...