Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 720: 150073, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754161

RESUMO

Astrocytes in the central nervous system play a vital role in modulating synaptic transmission and neuronal activation by releasing gliotransmitters. The 5-HTergic neurons in the ventrolateral periaqueductal gray (vlPAG) are important in anxiety processing. However, it remains uncertain whether the regulation of astrocytic activity on vlPAG 5-HTergic neurons is involved in anxiety processing. Here, through chemogenetic manipulation, we explored the impact of astrocytic activity in the PAG on the regulation of anxiety. To determine the role of astrocytes in the control of anxiety, we induced anxiety-like behaviors in mice through foot shock and investigated their effects on synaptic transmission and neuronal excitability in vlPAG 5-HTergic neurons. Foot shock caused anxiety-like behaviors, which were accompanied with the increase of the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs), the area of slow inward currents (SICs), and the spike frequency of action potentials (AP) in vlPAG 5-HTergic neurons. The chemogenetic inhibition of vlPAG astrocytes was found to attenuate stress-induced anxiety-like behaviors and decrease the heightened synaptic transmission and neuronal excitability of vlPAG 5-HTergic neurons. Conversely, chemogenetic activation of vlPAG astrocytes triggered anxiety-like behaviors, enhanced synaptic transmission, and increased the excitability of vlPAG 5-HTergic neurons in unstressed mice. In summary, this study has provided initial insights into the pathway by which astrocytes influence behavior through the rapid regulation of associated neurons. This offers a new perspective for the investigation of the biological mechanisms underlying anxiety.


Assuntos
Ansiedade , Astrócitos , Substância Cinzenta Periaquedutal , Animais , Substância Cinzenta Periaquedutal/fisiologia , Astrócitos/metabolismo , Ansiedade/fisiopatologia , Camundongos , Masculino , Transmissão Sináptica/fisiologia , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos Excitadores/fisiologia , Estresse Psicológico/fisiopatologia , Neurônios/fisiologia
2.
BMC Biol ; 20(1): 108, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35550070

RESUMO

BACKGROUND: Cannabinoids and their derivatives attract strong interest due to the tremendous potential of their psychoactive effects for treating psychiatric disorders and symptoms. However, their clinical application is restricted by various side-effects such as impaired coordination, anxiety, and learning and memory disability. Adverse impact on dorsal striatum-dependent learning is an important side-effect of cannabinoids. As one of the most important forms of learning mediated by the dorsal striatum, reinforcement learning is characterized by an initial association learning phase, followed by habit learning. While the effects of cannabinoids on habit learning have been well-studied, little is known about how cannabinoids influence the initial phase of reinforcement learning. RESULTS: We found that acute activation of cannabinoid receptor type 1 (CB1R) by the synthetic cannabinoid HU210 induced dose-dependent impairment of association learning, which could be alleviated by intra-dorsomedial striatum (DMS) injection of CB1R antagonist. Moreover, acute exposure to HU210 elicited enhanced synaptic transmission in striatonigral "direct" pathway medium spiny neurons (MSNs) but not indirect pathway neurons in DMS. Intriguingly, enhancement of synaptic transmission that is also observed after learning was abolished by HU210, indicating cannabinoid system might disrupt reinforcement learning by confounding synaptic plasticity normally required for learning. Remarkably, the impaired response-reinforcer learning was also induced by selectively enhancing the D1-MSN (MSN that selectively expresses the dopamine receptor type 1) activity by virally expressing excitatory hM3Dq DREADD (designer receptor exclusively activated by a designer drug), which could be rescued by specifically silencing the D1-MSN activity via hM4Di DREADD. CONCLUSION: Our findings demonstrate dose-dependent deleterious effects of cannabinoids on association learning by disrupting plasticity change required for learning associated with the striatal direct pathway, which furthers our understanding of the side-effects of cannabinoids and the underlying mechanisms.


Assuntos
Canabinoides , Aprendizagem por Associação , Canabinoides/metabolismo , Canabinoides/farmacologia , Corpo Estriado/metabolismo , Humanos , Neurônios/fisiologia , Transmissão Sináptica
3.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613854

RESUMO

The endogenous opioid system plays a crucial role in stress-induced analgesia. Mu-opioid receptors (MORs), one of the major opioid receptors, are expressed widely in subpopulations of cells throughout the CNS. However, the potential roles of MORs expressed in glutamatergic (MORGlut) and γ-aminobutyric acidergic (MORGABA) neurons in stress-induced analgesia remain unclear. By examining tail-flick latencies to noxious radiant heat of male mice, here we investigated the contributions of MORGABA and MORGlut to behavioral analgesia and activities of neurons projecting from periaqueductal gray (PAG) to rostral ventromedial medulla (RVM) induced by a range of time courses of forced swim exposure. The moderate but not transitory or prolonged swim exposure induced a MOR-dependent analgesia, although all of these three stresses enhanced ß-endorphin release. Selective deletion of MORGABA but not MORGlut clearly attenuated analgesia and blocked the enhancement of activities of PAG-RVM neurons induced by moderate swim exposure. Under transitory swim exposure, in contrast, selective deletion of MORGlut elicited an analgesia behavior via strengthening the activities of PAG-RVM neurons. These results indicate that MOR-dependent endogenous opioid signaling participates in nociceptive modulation in a wide range, not limited to moderate, of stress intensities. Endogenous activation of MORGABA exerts analgesia, whereas MORGlut produces antianalgesia. More importantly, with an increase of stress intensities, the efficiencies of MORs on nociception shifts from balance between MORGlut and MORGABA to biasing toward MORGABA-mediated processes. Our results point to the cellular dynamic characteristics of MORs expressed in excitatory and inhibitory neurons in pain modulation under various stress intensities.


Assuntos
Analgesia , Receptores Opioides mu , Analgesia/métodos , Analgésicos Opioides/farmacologia , Animais , Neurônios GABAérgicos/metabolismo , Masculino , Camundongos , Peptídeos Opioides , Dor , Substância Cinzenta Periaquedutal/metabolismo , Receptores Opioides mu/metabolismo , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...